

LIFECYCLE PLANNING TOOLKIT INCORPORATING DEFAULT CARRIAGEWAY DETERIORATION MODELS

Although this report was commissioned by the Department for Transport (DfT), the findings and recommendations are those of the authors and do not necessarily represent the views of the DfT. The information or guidance in this document (including third party information, products and services), is provided by DfT on an 'as is' basis, without any representation or endorsement made and without warranty of any kind whether express or implied.

Department for Transport Great Minster House 33 Horseferry Road London SW1P 4DR Telephone 0300 330 3000 Website www.dft.gov.uk

©Queen's Printer and Controller of Her Majesty's Stationery Office, 2012, except where otherwise stated

Copyright in the typographical arrangement rests with the Crown.

You may re-use this information (not including logos or third-party material) free of charge in any format or medium, under the terms of the Open Government Licence. To view this licence, visit www.nationalarchives.gov.uk/doc/open-government-licence/ or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or e-mail: psi@nationalarchives.gsi.gov.uk.

Where we have identified any third-party copyright information you will need to obtain permission from the copyright holders concerned.

COMMENTS & FEEDBACK

The HMEP Programme Board would welcome any comments and feedback on this Toolkit, so that it may be reviewed, improved and refined to give the sector the best support possible. If you wish to make a comment, please send an email to <u>highwaysefficiency@dft.gsi.gov.uk</u> with the header, 'Feedback on the Lifecycle Planning Toolkit'.

CO	NTENTS	
ABC	DUT THE HIGHWAYS MAINTENANCE EFFICIENCY PROGRAMME – HMEP	v
1	INTRODUCTION	1
	ABOUT THIS DOCUMENT ABOUT THE TOOLKIT DOWNLOADING THE TOOLKIT OPENING THE TOOLKIT SAVING THE TOOLKIT	1 1 1 3
2	PROCESSING OF DATA	4
3	INTRODUCTION TO THE TOOLKIT	6
	HOMESHEET MODEL STRUCTURE	6 7
4	POPULATING THE TOOLKIT	8
	INPUT SHEET HOMOGENOUS ASSET GROUPS TRANSITION PROBABILITY MATRICES TREATMENT EFFECTS AND COSTS TREATMENT STRATEGIES BUDGETS PERFORMANCE TARGETS	8 12 13 16 18 20 22
5	SETTING UP SCENARIOS AND RUNNING THE TOOLKIT	24
	SETTING UP ANALYSIS SCENARIOS RUNNING THE TOOLKIT	24 26
6	ANALYSING OUTPUTS	28
	UNDERSTANDING THE OUTPUTS EXPORTING THE OUTPUTS	28 36
7	WORKED EXAMPLE FOR THE CARRIAGEWAY TOOLKIT	37
	INTRODUCTION APPROACH OUTPUTS	37 40 42
8	WORKED EXAMPLE FOR THE ANCILLARY ASSETS TOOLKIT	49
	INTRODUCTION APPROACH OUTPUTS – TRAFFIC SIGNS OUTPUTS – LIGHTING COLUMNS	49 51 53 59
9	WORKED EXAMPLE FOR THE FOOTWAY TOOLKIT	65
	INTRODUCTION APPROACH OUTPUTS	65 67 68
10	ACKNOWLEDGEMENTS	73
11	REFERENCES	74
12	GLOSSARY	75

APPENDIX A – DEFAULT CARRIAGEWAY DETERIORATION MODELS	76
INTRODUCTION	76
TRANSITION PROBABILITY MATRIX	76
CONDITION BANDS FOR CARRIAGEWAYS	77
HOMOGENEOUS CARRIAGEWAY ASSET GROUPS	78
DEFAULT CARRIAGEWAY DETERIORATION MODELS	78
DEFAULT TRANSITION PROBABILITY MATRICES DERIVED USING SCANNER DATA	79
DEFAULT TRANSITION PROBABILITY MATRICES DERIVED USING CVI DATA	82
DEVELOPING TRANSITION PROBABILITY MATRICES FROM DATA	85
APPENDIX B – ILLUSTRATIONS FOR THE CARRIAGEWAY TOOLKIT	86
APPENDIX C – ILLUSTRATIONS FOR THE ANCILLARY ASSETS TOOLKIT	89
APPENDIX D – ILLUSTRATIONS FOR THE FOOTWAY TOOLKIT	90

LIST OF FIGURES

Figure 1.1: Enabling Macros in Excel 2003	2
Figure 1.2: Splash Screen	2
Figure 1.3: Options Button	2
Figure 1.4: Enabling macros in Excel 2007 or later	3
Figure 1.5: Saving the Toolkit	3
Figure 3.1: Basic User Guidance	6
Figure 3.2: Version history	7
Figure 3.3: Model Structure	7
Figure 4.1: Analysis Start Year and Analysis Period	9
Figure 4.2: Condition Bands	9
Figure 4.3: Homogeneous Asset Groups	10
Figure 4.4: Definition of Treatments	11
Figure 4.5: Output Graph Types	11
Figure 4.6: Asset inventory and initial condition distribution (Carriageway and Footway Toolkits)	12
Figure 4.7: Asset inventory and initial condition distribution (Ancillary Assets Toolkit)	13
Figure 4.8: TPM in Matrix Format	14
Figure 4.9: TPM in Row Format	15
Figure 4.10: Transition matrix in matrix format (Lighting Column Toolkit)	15
Figure 4.11: Deterioration profile using data from Figure 4.7	16
Figure 4.12: After Treatment Asset Group	17
Figure 4.13: Treatment Effects	17
Figure 4.14: Unit Costs of Treatments	18
Figure 4.15: Sequence deterioration, treatment intervention and treatment effects	19
Figure 4.16: Treatment Strategy	19
Figure 4.17: Budgets	21
Figure 4.18: Performance Targets	22
Figure 5.1: Scenario Worksheet	24
Figure 5.2: Assignment of Budget Constraints and Performance Targets to Analysis Scenarios	25
Figure 5.3: Sources of Errors in Input Data	26
Figure 5.4: Analysis Progress	26
Figure 5.5: Successful Run	26
Figure 6.1: Condition by Year	28
Figure 6.2: Condition Graph	29

Figure 6.3: Work Quantity (m ²)	30
Figure 6.4: Work Quantity Graph	31
Figure 6.5: Expenditure (£) by Condition	32
Figure 6.6: Selecting Asset Groups	33
Figure 6.7: Work Quantity Graph	33
Figure 6.8: Expenditure (£) by Treatment	34
Figure 6.9: Expenditure by Treatment Graph	35
Figure 6.10: Area by Year	35
Figure 6.11: Asset Quantity by Year	36
Figure 6.12: Confirmation Message for Exporting Outputs	36
Figure 7.1: Scenario 1 (Do Nothing) Predicted Condition Profile	42
Figure 7.2: Scenario 2 (Steady State) Predicted Condition Profile	43
Figure 7.3: Scenario 3 (Budget Constraint) Predicted Condition Profile	43
Figure 7.4: Scenario 4 (Performance Target) Predicted Condition Profile	44
Figure 7.5: Scenario 2 (Steady State) Predicted Expenditure Profile by Treatment Type	45
Figure 7.6: Scenario 3 (Budget Constraint) Predicted Expenditure Profile by Treatment Type	46
Figure 7.7: Scenario 4 (Performance Target) Predicted Expenditure Profile by Treatment Type	46
Figure 7.8: Asset Proportions in Very Poor and Poor Condition by Analysis Scenario	47
Figure 7.9: Summary of Expenditure Profile by Analysis Scenario	48
Figure 8.1: Scenario 1 (Replace on Fail) Predicted Condition Profile	53
Figure 8.2: Scenario 2 (Budget Constraint) Predicted Condition Profile	54
Figure 8.3: Scenario 1 (Replace on Fail) Predicted Expenditure Profile	55
Figure 8.4: Scenario 2 (Budget Constraint) Predicted Expenditure Profile	56
Figure 8.5: Scenario 1 (Replace on Fail) Predicted Work Quantities	57
Figure 8.6: Scenario 2 (Budget Constraint) Predicted Work Quantities	58
Figure 8.7: Scenario 1 (Replace on Fail) Predicted Condition Profile	59
Figure 8.8: Scenario 2 (Budget Constraint) Predicted Condition Profile	60
Figure 8.9: Scenario 1 (Replace on Fail) Predicted Expenditure Profile	61
Figure 8.10: Scenario 2 (Budget Constraint) Predicted Expenditure Profile	62
Figure 8.11: Scenario 1 (Replace on Fail) Predicted Work Quantities	63
Figure 8.12: Scenario 2 (Budget Constraint) Predicted Work Quantities	64
Figure 9.1: Deterioration Models for each Asset Group	65
Figure 9.2: Scenario 1 (Do Nothing) Predicted Condition Profile for 'Flags' Asset Group	69
Figure 9.3: Scenario 1 (Do Nothing) Predicted Condition Profile for 'Bituminous' Asset Group	69
Figure 9.4: Scenario 2 Predicted Condition Profile for 'Flags' Asset Group	70
Figure 9.5: Scenario 2 Predicted Condition Profile for 'Bituminous' Asset Group	70
Figure 9.6: Scenario 2 Predicted Expenditure Profile by Treatment Type	71
Figure 9.7: Asset Group Area by year under Scenario 2	71
Figure 9.8: Area by Year for Asset Group 'Flags'	72
Figure 9.9: Area by Year for Asset Group 'Bituminous'	72
General second	. 2

LIST OF TABLES

Table 2.1: Input Data Requirements	4
Table 4.1: Effect of Replacement [Bituminous] Treatment on Condition	18
Table 4.2: Associating Expressions to Performance Indicators	23
Table 5.1: Typical Run Durations	27
Table 7.1: Asset Inventory and Condition	37
Table 7.2: Typical Generic Treatment Types	38
Table 7.3: Treatment Type, Unit Costs and Effects	38
Table 7.4: Analysis Scenarios	39
Table 7.5: Steps for Implementing the Worked Example	40
Table 7.6: Average Annual Budget for Scenario 2 (Steady State) in £	45
Table 8.1: Asset Inventory, Condition and Service Life	49
Table 8.2: Treatment Type, Unit Costs and Effects	50
Table 8.3: Analysis Scenarios	50
Table 8.4: Steps for Implementing the Worked Example	51
Table 9.1: Asset Inventory and Condition	65
Table 9.2: Treatment Types	66
Table 9.3: Treatment Effects & Unit Costs	66
Table 9.4: Analysis Scenarios	66
Table 9.5: Steps for Implementing the Worked Example	67

ABOUT THE HIGHWAYS MAINTENANCE EFFICIENCY PROGRAMME – HMEP

The Highways Maintenance Efficiency Programme (HMEP) is a sector-led transformation initiative aiming to maximise returns from investment and deliver efficiencies in highway maintenance services. The Programme started in April 2011 with sponsorship from the Department for Transport and is intended to run until 2018.

The Programme is offering local highway practitioners benefits from different ways of working. The vision is that, over time, local highway authorities as clients and their service providers (be they from the private or public sector) will adopt an ambitious and longer-term approach to delivering highway maintenance. This will enable them to:

- continuously find new and improved ways of delivering services to highway users and managing highways assets;
- make use of collaborative partnerships to improve processes and outcomes; and
- deliver a sustainable balance between meeting the needs of highway users, improving quality and minimising costs.

The overall programme has been developed by the Programme Board through key personnel who support HMEP's development. This ensures that:

- HMEP is truly being driven by what the whole sector needs and wants ('by the sector, for the sector').
- the solutions identified by the sector are relevant, realistic, repeatable, scalable and sustainable; and
- HMEP is benefits-led, driving true transformation of the sector with tangible efficiency gains and a lasting legacy.

As a transformation initiative, HMEP is targeting the way local highway authorities conduct their business. It invites the sector to adopt new ways of working to deliver efficiency savings through the following offerings:

- Asset Management
 - o Advice to the sector in the form of updated asset management guidance for highway infrastructure.
 - A lifecycle planning tool incorporating deterioration models, to determine whole life asset costs, thus moving away from a reactive to a longer-term approach for maintaining highways assets.
 - o Guidance on the management of highway drainage assets.
 - Training specifically targeted at practitioners to help them move towards an asset management approach and to adopt the new HMEP guidance and tools.
- Collaboration and Change
 - Guidance on how alliances between authorities, and clients and their providers, can be formed to deliver efficiencies in the delivery of highway maintenance services.
 - Processes for changing business; for instance, by applying Lean thinking to the processes behind service delivery and how services or processes can be streamlined to realise efficiencies.
- Procurement, Contracting and Standardisation
 - Advice on routes to procurement, enabling authorities to determine how their current service aligns with current thinking and which is the best procurement option to realise future service ambitions.
 - A standardised form of contract and highway maintenance specification which are better aligned to the activities that local highway authorities undertake,
- Benchmarking and Performance
 - Collecting, sharing and comparing performance data on Customer/Quality/Cost to help drive targeted efficiencies and understand how effective local highway authorities are in delivering Value for Money services.

Products and tools are being developed for each of these themes and are being designed to be interdependent, but complementary, so that authorities can maximise returns from their investments.

This report is supported by the following organisations:

1 INTRODUCTION

ABOUT THIS DOCUMENT

- 1.1 This document is a User Guide for the Lifecycle Planning Toolkit which was developed under the HMEP and incorporates outputs of the work carried out to develop a standard deterioration model for local highway authority bituminous carriageways. The User Guide is applicable to the following three versions of the Lifecycle Planning Toolkit:
 - The **Carriageway Toolkit** which is aimed at providing users with planning level decision support in the maintenance management of carriageways.
 - The Ancillary Assets Toolkit which is aimed at providing users with planning level decision support in the maintenance management of ancillary highway assets including: road signs, bollards, vehicle restraint systems, street lighting, traffic signals and linear assets such as road markings and kerbs.
 - The **Footway Toolkit** which is aimed at providing users with planning level decision support in the maintenance management for shared use footways and dedicated cycle ways.
- 1.2 The three Toolkits listed above are based on the same principles and operate in the same manner. Therefore, one User Guide covers all three Toolkits. Where there are differences in the operation between the three Toolkits, examples have been provided to demonstrate these. In addition, worked examples for each Toolkit are included in Sections 7, 8 and 9.
- 1.3 Default Carriageway Deterioration Models which are compatible with the Carriageway Toolkit are given in Appendix A.

ABOUT THE TOOLKIT

- 1.4 The Toolkit is intended for use by local highway asset management engineers to support strategic level planning decisions including the following:
 - Assessing impact of different levels of funding on asset performance and asset maintenance needs.
 - Investigating current and future levels of funding required to achieve a given condition or performance target for the asset.
 - Identifying the levels of funding required to minimise whole life costs.
 - Allocating resources to assets and Treatment Types to manage whole life costs.
- 1.5 Long-term estimates of expenditure and associated asset performance are produced by the Toolkit. These estimates can be used to determine the likely performance of the asset under budget constraints or, alternatively, to determine the budget required to support a target asset performance.

DOWNLOADING THE TOOLKIT

- 1.6 The latest version of the Toolkit can be downloaded from the HMEP website. The Toolkit was developed to work in Microsoft Excel versions 2003, 2007 and 2010. The following should be noted:
 - Toolkit versions with file extension *.xls are intended for use with Excel 2003.
 - Toolkit versions with file extension *.xlsm are intended for use with Excel 2007 and 2010.

OPENING THE TOOLKIT

- 1.7 The Excel 2003 version of the Toolkit (with file extension '*.xls') may not work properly if operated under the 'compatibility mode' in Excel 2007 or 2010. If it is desired to use the Excel 2003 version of the Toolkit in later versions of Excel, then the Toolkit should be saved in '*.xlsm' format before opening.
- 1.8 The following steps should be followed when opening the Toolkit to ensure that it works correctly:

- i. Open the programme Microsoft Excel.
- ii. Locate and open the Toolkit.
- iii. If using Excel 2003, click on 'Enable Macros' when prompted (Figure 1.1).

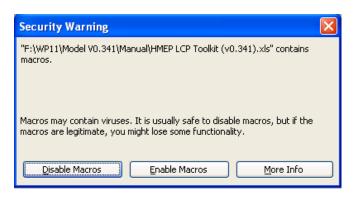


Figure 1.1: Enabling Macros in Excel 2003

- iv. If using Excel 2007 or later, a splash screen providing basic guidance on enabling macros (Figure 1.2) will normally be displayed after successfully completing step 4 above.
- v. Once macros are enabled, Click anywhere on the splash screen to continue to the 'Homesheet' worksheet. If you need to view the splash screen again, then click on the 'Show Splash Screen' button at the bottom of the worksheet.

Carriageway Lifecycle Planning Toolkit	HIGhways Maintenance Efficiency Programme
HOMESHEET	ñ 🖪 🥹
 Welcome to the HMEP Carriageway Lifecycle Plannin This model was developed under Work Package 6 of the Highway Maintenance Effliability for loss or damage that may be suffered by any person or organisation as model, or as the result of any errors or omissions in the information contaccepted by the developers of the toolkit. N.B. If you are using Excel 2003 you should enable macros when opened; <u>if you are</u> you will need to enable macros after it has opened. To enable macros in Excel 20 (Options' button above and then select 'Enable this contert. 	ficiency Programme. No a result of the use of this tained herein, is <u>e using Excel 2007 or later</u> 2007 or later click on the
Security Warning Some active content has been disabled. Options Once you have enabled macros, click here to continue	

Figure 1.2: Splash Screen

vi. If using Excel 2007 or later, click on the '**Options...**' button (Figure 1.3) and then select '**Enable this** content' (Figure 1.4).

Figure 1.3: Options Button

Microsoft Office Security Options					
Security Alert - Macros & ActiveX					
Macro Macros have been disabled. Macros might contain viruses or other security hazards. Do not enable this content unless you trust the source of this file.					
Warning: It is not possible to determine that this content came from a trustworthy source. You should leave this content disabled unless the content provides critical functionality and you trust its source.					
<u>More information</u> File Path: D:\HMEP2\WP11\Model V0.341\Manual\HMEP LCP Toolkit (v0.341).xls					
Help protect me from unknown content (recommended) Enable this content					
Open the Trust Center OK Cancel					

Figure 1.4: Enabling macros in Excel 2007 or later

vii. If using a projector, ensure that the spreadsheet is closed when connecting to the projector. Switch on the projector and then open the Toolkit again once the projector is switched on. This is to ensure that all the buttons in the spreadsheet resize properly.

SAVING THE TOOLKIT

- i. To save a version of the Toolkit using Excel 2003, select 'Save as' as per usual.
- ii. To save a version of the Toolkit using Excel 2007 or later, select 'Excel Macro-Enabled Workbook' from the 'Save as type:' dialogue box as illustrated in Figure 1.5 below:

Save As							? 🗙
Save in:	📋 My Docun	nents ·	*	(- 刘	×	📑 🎫 🗸
🚞 Recent	Downloads						
🞯 Desktop	😬 My Pictures	;					
Documents							
S My Computer							
Section My Network Places							
	File <u>n</u> ame:	hmep.xlsm			*		
	Save as type:				_		
	pave as Cyber	Excel Macro-Enabled Workbook (*.xlsm)			*		
		Excel Workbook (*.xlsx) Excel Macro-Enabled Workbook (*.xlsm)				-	
Tools 🔻		Excel Binary Workbook (*.xlsb)					Cancel
		Excel 97-2003 Workbook (*.xls) XML Data (*.xml)			_		
		Single File Web Page (*.mht; *.mhtml)			*		

2 PROCESSING OF DATA

- 2.1 Table 2.1 sets out the input data required and how data should be processed prior to loading into the Toolkit.
 - Ideally, inventory and condition data should be extracted from the user's asset management systems. If
 data is limited or unavailable, then engineering judgement and local experience may be used to make the
 necessary assumptions required to populate the Toolkit. However, these assumptions should be clearly
 documented, and considered as limitations to the robustness of the Toolkit's outputs.
 - Homogeneous asset groups, condition measures and condition band thresholds are user-defined.

Table 2.1: Input Data Requirements

Data Type/Category	Description	Units
Homogeneous Asset Group	 A Homogeneous Asset Group is a grouping of assets which are assumed to deteriorate in a similar manner. The same deterioration models and treatment strategy are assumed to apply to all assets in the Homogeneous Asset Group. For example, a carriageway road network may be aggregated into the following 10 Homogeneous Asset Groups based on hierarchy and environment: Rural Strategic Roads Rural Main Distributor Roads Rural Link Roads Rural Local Access Roads Urban Main Distributor Roads Urban Asset Groups Based Sconds Urban Asset Group Sconds Wrate Strategic Roads Urban Asset Sconds Urban Asset Sconds Urban Link Roads Urban Local Access Roads Wrate Scondary Distributor Roads Urban Local Access Roads 	Not Applicable
	The following inventory data is required for each Homogeneous Asset Group:	-
Inventory	Carriageway and Footway Toolkits : Average length of each Homogeneous Asset Group.	Metres (m)
inventory	Ancillary Assets Toolkit : Quantity (number, length, or area) of assets within each Homogeneous Asset Group.	-
Condition Measure	Definition or selection of criteria or index for describing the Condition Band of the assets (e.g. Carriageway Condition Index (CCI) or SCANNER Road Condition Indicator (RCI)).	Not Applicable
Condition Band Threshold	Rationale for aggregating the condition of the assets into a defined number of Condition Bands ranging from an excellent state (e.g. Very Good) to a critical or failed state (e.g. Very Poor). An example of condition band thresholds is given in Appendix A.	Not Applicable

User Guidance for Lifecycle Planning Toolkit

Current Condition Distribution The percentage of the quantity of assets in each **Condition Band** for each Homogeneous Asset Group. This is normally determined from the most recently observed data or informed by expert knowledge.

Percentage (%)

3 INTRODUCTION TO THE TOOLKIT

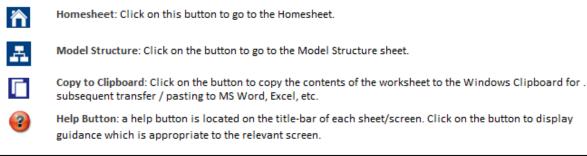
- 3.1 This section describes the following introductory worksheets in the Toolkit:
 - **'0a Homesheet'**: this worksheet provides basic user guidance for the Toolkit and introduces task-bar buttons.
 - '0b Model Structure': illustrates the structure of the Lifecycle Planning Toolkit.

HOMESHEET

- 3.2 The '**0a Homesheet**' worksheet provides the following information:
 - Basic guidance.
 - Software version history.
 - Contacts for fault reporting.
- 3.3 The worksheet is protected and users are therefore unable to make changes to it.

Basic user guidance

- 3.4 Basic user guidance (Figure 3.1) provided on the 'Homesheet' worksheet includes:
 - Definition of sheet tab colours used throughout the software.
 - Definition of input cell colours.
 - Description of various task-bar buttons in the software.


SHEET TAB COLOURS

Input Sheets: use these sheets to input data to be used in the model, and to initiate model runs.
Output Sheets: use these sheets to view model outputs in tabular and graphical form.

INPUT CELL COLOURS

- Mandatory: values must be supplied for these cells before the model can be run. In certain circumstances values may be left blank to signify zero values
- Optional: the values in these cells are not used in model runs, but may be entered to aid interpretation of outputs.
- Read-Only: the values in these cells are for display purposes only and may not be edited.

TASK-BAR BUTTONS

Figure 3.1: Basic User Guidance

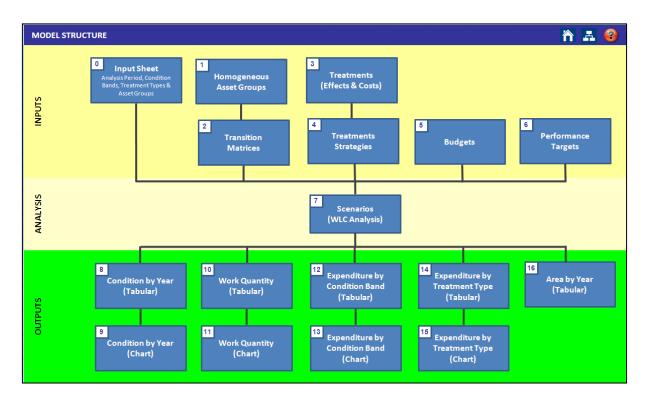
Version History

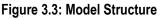
3.5 The version history table in the '**Homesheet**' worksheet (Figure 3.2) identifies the current version number of the software, the date it was last modified, and information on previous versions of the software.

/ERSION HISTORY						
Version	Date	Description				
1	29/11/2012	First release of the HMEP Toolkit				

Figure 3.2: Version history

Fault Reporting


3.6 Faults encountered whilst using the Toolkit should be reported preferably by email using contact details provided in the 'Homesheet'.


MODEL STRUCTURE

3.7 The **'0b - Model Structure'** worksheet depicts the structure of the Toolkit (Figure 3.3). Each box represents a worksheet in the Toolkit. The number in the top-left corner of each box denotes the number of the worksheet, and the order in which the worksheets are typically used when conducting an analysis.

Navigating to Other Worksheets

- i. Click on a box on the Toolkit structure to navigate to the worksheet named in that box.
- ii. To return to the '**Model Structure**' worksheet, click on the '**Model Structure**' button located on the top right of any worksheet.

4 POPULATING THE TOOLKIT

- 4.1 The following worksheets should be populated prior to running the Toolkit:
 - 0 Input Sheet:
 - Used for setting up the Toolkit including any definitions of parameters for Analysis Period, preferred output chart type, number and names of Condition Bands, number and names of Homogenous Asset Groups, number, name and description of Treatments.
 - 1 Homog Asset Groups:
 - Inventory data and condition distribution for each asset group at the start of the year of analysis need to be loaded into this worksheet.
 - 2 Transition Matrices:
 - This worksheet is used to define, edit and view Transition Probability Matrices (TPMs), which are used in the Toolkit to model the deterioration of assets.
 - A Transition Probability Matrix embodies all information necessary to model the annual deterioration of a particular homogeneous asset group.
 - 3 Treatment Effects & Costs:
 - o Treatment Effects and Treatment Unit Costs are specified in this worksheet.
 - 4 Treatment Strategies:
 - The proportion of assets to be treated in each year by a particular Treatment is specified in this worksheet.
 - 5 Budgets:
 - o Budget options can be defined for each Treatment in this worksheet.
 - 6 Performance Targets:
 - Performance Targets can be defined for each Treatment in this worksheet.

INPUT SHEET

- 4.2 The **'0 Input Sheet'** worksheet contains information for setting up the Toolkit and requires the user to enter the following information:
 - Start year of the analysis and Analysis Period.
 - Preferred chart type for the output graphs.
 - Number and description of Condition Bands.
 - Number and names of Homogeneous Asset Groups.
 - Number, name and description of Treatments.

Defining Start Year and Analysis Period

- i. Enter the start year of the analysis (e.g. 2012) in the 'Start Year' input cell as illustrated in Figure 4.1.
- ii. Enter the Analysis Period in years in the 'Analysis Period' input cell. The Analysis Period must be within the range from 10 to 60 years.
- iii. The End Year is automatically calculated from the Start Year and the Analysis Period.

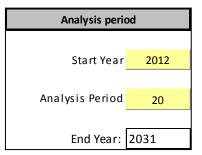


Figure 4.1: Analysis Start Year and Analysis Period

Condition Bands

- 4.3 Condition Bands are used to categorise the condition of the assets being modelled. Condition Bands can be modified from the **'Input Sheet'** by:
 - Specifying new Condition Bands.
 - Deleting existing bands.

Specifying new Condition Bands

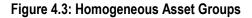
- i. Select the input cell labelled 'Number of Condition Bands' (Figure 4.2).
- ii. Increase or reduce the existing number of Condition Bands as desired. The number of Condition Bands must range from 3 to 10.
- iii. Press 'Enter' or click on any other input cell. Additional Condition Band cells will be generated below the existing Condition Bands.
- iv. The numbers in the **'Rank'** column (Figure 4.2) are automatically generated when the number of Condition Bands is increased.
- v. The Rank denotes the order in which Condition Bands are ranked. A Ranking of 1 denotes the best (as new) Condition Band while the lowest Rank (e.g. 5 in Figure 4.2) denotes the worst or failed Condition Band.
- vi. Click on the **'Description'** cell for each new Condition Band and type an appropriate description in line with the ranking of the condition band.
- vii. Click on the '**Short Code**' cell for each new Condition Band and then type an appropriate code corresponding to the description of the condition band. The short code is limited to no more than three characters. It will also be used in other worksheets in the Toolkit. For example, the short code 'VG' could be used to denote a 'Very Good' condition band as illustrated in Figure 4.2.

	Condition Bands				
Number of condition bands	5				
Rank	Description	Short Code			
1	Very Good	VG			
2	Good	G			
3	Fair	F			
4	Poor	Р			
5	Very Poor	VP			

Figure 4.2: Condition Bands

Reducing the number of existing Condition Bands

- i. To reduce the number of existing Condition Bands, specify the number of Condition Bands that should remain in the **'Number of Condition Bands'** input cell (Figure 4.2).
- ii. A pop-up will be displayed asking you to confirm if you wish to continue.
- iii. Click 'Yes'. The number of Condition Bands will be reduced to the number specified by removing the lowest ranked Condition Bands first. For example, if the number of existing conditions illustrated in Figure 4.2 is reduced from 5 to 3, then the Very Poor (VP) and Poor (P) Condition Bands would be deleted.


Homogeneous Asset Groups

- 4.4 Assets in a Homogenous Asset Group are assumed to deteriorate in a similar manner. The same maintenance strategy is assumed to apply to all assets in a Homogenous Asset Group. Outputs are generated by the Toolkit for each Homogeneous Asset Group.
- 4.5 Homogeneous Asset Groups can be formulated by grouping together assets using key attributes such as asset type (e.g. lighting columns, traffic signals, street furniture, etc.), geographical location (e.g. districts), environment (e.g. urban or rural) and road hierarchy (e.g. strategic routes, main distributors, etc.). For example, two (2) environment and five (5) road hierarchy attributes were used to define 10 (2 x 5) Homogeneous Asset Groups for carriageways.

Adding new Homogeneous Asset Groups

- i. Select the 'Number of Homogeneous Asset Groups' input cell (Figure 4.3).
- ii. Increase the existing number of Homogeneous Asset Groups as desired. The number of Homogeneous Asset Groups must be in the range from 1 to 100. Note that if high numbers of condition bands are chosen then the Toolkit may take several minutes to update.
- iii. Press 'Enter' or click on any other input cell. Additional Homogeneous Asset Group input cells will be generated below the existing asset groups.
- iv. Click on the 'Name' cell for each new Homogeneous Asset Group and specify the name of the asset group. The name of each Homogeneous Asset Group should normally be specified to reflect the rationale for homogeneity.

Homog	eneous asset groups
Number of	
homogeneous	10
asset groups	
No.	Name
1	Urban: Strategic
2	Urban: Main
3	Urban: Secondary
4	Urban: Link
5	Rural: Local
6	Rural: Strategic
7	Rural: Main
8	Rural: Secondary
9	Rural: Link
10	Rural: Local

Reducing the number of existing Homogeneous Asset Groups

v. To reduce the number of existing asset groups, specify the number of Homogeneous Asset Groups that should remain in the 'Number of Homogeneous Asset Groups' input cell.

- vi. A pop-up window will be displayed asking you to confirm if you wish to continue.
- vii. Click **'Yes'**, and the number of asset groups will be reduced to the number specified by removing the asset groups at the bottom of the list first.

Treatment Types

Adding new Treatment Types

- i. Select the 'Number of Treatment Types' input cell (Figure 4.4).
- ii. Increase the existing number of Treatment Types as desired. The number of Treatment Types must range from 1 to 10.
- iii. Press 'Enter' or click on any other input cell. Additional Treatment Types inputs will be generated below existing Treatment Types.
- iv. Type a short Treatment name in the input cells under the **Name** column. The specified Treatment name will be used in other worksheets.

Reducing the number of Treatment Types

- i. Specify the number of Treatment Types that should remain in the 'Number of Treatment Types' input cell.
- ii. A pop-up will be displayed asking you to confirm if you wish to continue.
- iii. Click **'Yes'**, and the number of Treatment Types will be reduced to match the number specified (in step 1 above) by removing Treatment Types starting with Treatments at the bottom of the list.

	Treatment Types	
	Number of treatment types	6
No.	Description	Name
1	Includes 15% patching to binder course	Surface Dressing
2	Includes 15% patching to binder course	Micro Asphalt
3	40% patching to binder course & 15% patching to base course	Moderate Inlay
4	40% patching to binder course & 15% patching to base course	Moderate Overlay
5	Full binder course replacement & 30% patching to base course	Deep Inlay
6	Full reconstruction	Reconstruction

Figure 4.4: Definition of Treatments

Output graphs

4.6 Two types of output graphs (Bar or Area) can be produced by the Toolkit. The preferred output graph type can be specified by selecting either '**Bar**' or '**Area**' option from the drop down list located under the '**Output Graphs**' section in the '**Input Sheet**' (Figure 4.5).

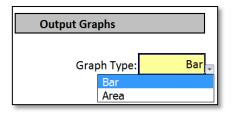


Figure 4.5: Output Graph Types

Model parameters which are not user-definable

- 4.7 The following Toolkit parameters located in the '**Input Sheet**' are protected and cannot be modified by users:
 - Minimum and maximum Analysis Period.
 - Minimum and maximum Analysis Time Step.
 - Minimum and maximum Number of Bands.
 - Minimum and maximum Number of Homogenous Groups.
 - Minimum and maximum Number of Treatments.

HOMOGENOUS ASSET GROUPS

- 4.8 The '1 Homog Asset Groups' worksheet is used for specifying the following:
 - Inventory data for each Homogeneous Asset Group.
 - Initial or base condition data distribution for each Homogeneous Asset Group.

Loading Inventory Data

- 4.9 The required inventory data for the Toolkit is as follows:
 - **Carriageway and Footway Toolkits** (Figure 4.6): specify the total length (in metres) and the average width (in metres) of the assets in each Homogeneous Asset Group. Commas depicting thousands should not be used as it may prevent the Toolkit from working correctly. If the total length and average width of the assets are unknown to the user but the area is known, the user can specify notional lengths and widths to give the desired area for the asset group. This will not impact on the outputs of the Toolkit since only the value of area is used in the calculations.
 - Ancillary Assets Toolkit (Figure 4.7): specify the quantity of assets in each Homogeneous Asset Group. The correct unit for each Homogeneous Asset Group should be selected from the drop down menu under the 'Units' column. Commas depicting thousands should not be used as it may prevent the Toolkit from working correctly.

Initial Condition

4.10 For each Homogeneous Asset Group, enter the observed or estimated percentage of the quantity of asset group in Condition Band in the base year. The sum of the proportions entered must add up to 100%. A validation **'ERROR'** message is displayed if this condition is not met (Figure 4.6 and Figure 4.7).

							Ini	tial Conditi	ion	
						% of Ass	et Group i	n conditior	n band in ba	ase year
						1	2	3	4	5
Asset Group	Description	Length (m)	Width (m)	Area	Units	VG	G	F	Ρ	VP
1	Strategic & Main	43,264	7.80	337,459	m²	30%	44%	20%	4%	2%
2	Secondary	15,315	6.30	96 <i>,</i> 485	m²	26%	39%	25%	6%	4%
3	Link	8,930	5.50	49,115	m²	25%	37%	31%	4%	3%
4	Local	34,800	4.40	153,120	m²	17%	26%	30%	16%	11%

Figure 4.6: Asset inventory and initial condition distribution (Carriageway and Footway Toolkits)

					Ini	tial Conditi	on			
				% of As	set Group i	n conditior	band in ba	ase year		
		1 2 3 4 5								
Asset Group	Description	Quantity	Units	VG	G	F	Ρ	VP		
1	Lighting Column	2,000	no.	40%	30%	15%	10%	5%		
2	Road Studs	85,000	m	50%	30%	15%	5%	0%		
3	Safety Fences	4,000	m	80%	15%	5%	0%	0%		

Figure 4.7: Asset inventory and initial condition distribution (Ancillary Assets Toolkit)

TRANSITION PROBABILITY MATRICES

Background

- 4.11 The Toolkit makes use of TPMs to model the deterioration of each Homogeneous Asset Group over one year.
- 4.12 The general form of the TPM denoted by *P* is given by Equation 4.1:

$$P = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2n} \\ \vdots & & & \vdots \\ p_{n1} & p_{n2} & \dots & p_{nn} \end{bmatrix}$$
(4.1)

- 4.13 This matrix contains all the information necessary to model the deterioration of the Homogeneous Asset Group. The transition probabilities, p_{ij} , indicate the probability of the portion of the asset group in condition *i* moving to condition *j* in one year due to the damaging effects of traffic, environment and/or other factors, as applicable.
- 4.14 For every TPM the following conditions apply:
 - The sum of the entries in each row must be equal to one and all entries must be non-negative.
 - $p_{ij} = 0$ for *i>j*, signifying that assets cannot improve in condition without first receiving some Treatment. This is illustrated in the matrix given in Equation 4.2.
 - *p_{nn}* = 1, signifying a holding state whereby assets that have reached their worst condition cannot deteriorate further. Consequently, in asset deterioration, the general form of the transition matrix P is denoted by Equation 4.2:

$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} & \dots & p_{1n} \\ 0 & p_{22} & p_{23} & \dots & p_{2n} \\ 0 & 0 & p_{33} & \dots & p_{3n} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}_{(4.2)}$$

- 4.15 Guidance on how to develop TPMs for Homogeneous Asset Groups from historic data is provided in Appendix A. Appendix A also gives default Carriageway Deterioration Models which are compatible with the Carriageway Toolkit. Users may wish to use alternative TPMs, where these are available.
- 4.16 The '2 Transition Matrices' worksheet in the Toolkit contains options for:
 - Adding a new TPM.
 - Copying an existing TPM.

- Deleting an existing TPM.
- Deriving a TPM from the estimated service life of the Homogeneous Asset Group (this functionality is available in the Ancillary Assets Toolkit only).
- Viewing and editing the deterioration matrix and the deterioration profile of a selected TPM (Figure 4.8).

Adding a new Transition Probability Matrix

- i. Click on the 'Add New' button in the 'Transition Matrices' worksheet. A new input row will be added at the bottom of the list of existing TPMs.
- ii. Enter the name of the TPM in the 'Matrix Name' column.
- iii. Select the new TPM and click on the 'View/Edit Matrix' button to view/edit the new TPM in a matrix format (Figure 4.8).

Transition Matrix	:						X
Matrix Name:	Strategic	& main]	
Matrix Dete	rioration Pr	ofile					
	on Matrix ·						
(VG), Go band; e the prop	ood (G), Av ach column portion of a	erage (Å), l in the matr ssets in the	Poor (P) ar ix represer respective	nd Very Poo nts a destir e starting c	or (VP). E nation cor condition b	I bands: For example, 5 condition bands Very Good Each row in the matrix represents a starting condition ondition band; each cell in the matrix is used to define band, which will end-up in the respective destination es in each row must sum to 1.	
Contaito	-> VG	-> G	-> F		-> VP		
VG	0.91	0.09	0	0	0	2	
	G	0.714	0.279	0.007	0		
		F	0.681	0.318	0.001		
			Р	0.771	0.229	9	
						Cancel Save &	Exit

Figure 4.8: TPM in Matrix Format

- iv. The TPM in Figure 4.8 shows the proportions of assets that would remain in a starting Condition Band or move to a worst Condition Band after a single deterioration cycle (over one year). Using the TPM illustrated in Figure 4.8 as an example, after one deterioration cycle:
 - 91% of assets in Very Good (VG) Condition Band will remain in Very Good (VG) condition band, while 9% will move to Good (G) Condition Band;
 - 71.4% of assets in Good (G) band will remain in Good (G) condition, 27.9% of the assets in Good (G) condition band will move to Fair (F) Condition Band, and 0.7% of the assets in Good (G) condition band will move to the Poor (P) condition band;
 - 68.1% of assets in Fair (F) band will remain in Fair (F) condition, while 31.8% will move to Poor (P)
 Condition Band and 0.1% will move to the Very Poor (VP) condition band; and
 - 77.1% of assets in Poor (P) band will remain in Poor (P) condition, while 22.9% will move to Very Poor (VP) Condition Band.
- v. Click on the **'Save & Exit'** button. The sum of the proportions specified in each row must be 1 otherwise an error message will be displayed in the **'Validity Check'** column shown in Figure 4.9.

Add New	Сору	Dele	ete			Vie	w/Edit Ma	atrix											
				VG			Validity		(G		Validity		F		Validity		P	Validity
Matrix	Name	-> VG	-> G	-> F	-> P	-> VP	Check	-> G	-> F	-> P	-> VP	Check	-> F	-> P	-> VP	Check	-> P	-> VP	Check
Strategic	: & main	0.910	0.090	0.000	0.000	0.000	OK	0.714	0.279	0.007	0.000	OK	0.681	0.318	0.001	ОК	0.771	0.229	ОК
Secon	ndary	0.928	0.072	0.000	0.000	0.000	OK	0.811	0.189	0.000	0.000	OK	0.777	0.223	0.000	ОК	0.839	0.161	OK
Lir	nk	0.933	0.067	0.000	0.000	0.000	OK	0.773	0.224	0.003	0.000	ОК	0.722	0.278	0.000	ОК	0.836	0.164	OK
Loc	al	0.963	0.037	0.000	0.000	0.000	ОК	0.898	0.102	0.000	0.000	OK	0.897	0.103	0.000	ОК	0.933	0.067	OK

Figure 4.9: TPM in Row Format

Copying an existing Transition Probability Matrix

4.17 To copy an existing TPM, select the TPM and click on the **'Copy'** button (Figure 4.9). The copied TPM will be placed at the bottom of the list of existing TPMs.

Deleting an existing Transition Probability Matrix

- i. To delete an existing TPM, select the TPM and click on the '**Delete**' button. The selected TPM will be deleted.
- ii. You will be asked to confirm if you wish to continue. If you are sure then click on the '**Yes**' button otherwise click on the '**No**' button.

Deriving Transition Probability Matrix from Asset Service Life (Ancillary Asset Toolkit only)

- 4.18 In the absence of suitable historical data for estimating deterioration of ancillary assets, TPMs suitable for use with the Toolkit can be estimated from the service life of the ancillary asset. This functionality is available in the Ancillary Asset Toolkit only. The steps for deriving TPMs from Asset Service Life are as follows:
 - i. From the **'Transition Matrices'** worksheet, add a new TPM or select an existing TPM and click on the **'View/Edit Matrix'** button.
 - ii. Specify an Asset Service Life (in years) in the 'Asset Life' input box (Figure 4.10). Asset Service Life is defined as the average time (in years) it takes an asset to move from the best (as new) condition state to the worst condition state. The specified Asset Life must not be less than 4 years and should not exceed 50 years.

Transition Mat	rix			-			X
Matrix Name:	Lighting (Column					
,	terioration Pr	rofile					Asset Life
(VG), band; the p	Good (G), Av each column roportion of a	verage (A), i in the mati assets in the	Poor (P) a rix represe e respectiv	nd Very Po ents a destin ve starting o	or (VP). Ei nation con condition b	bands: For example, 5 condition bands Very Good ach row in the matrix represents a starting condition dition band; each cell in the matrix is used to define and, which will end-up in the respective destination in each row must sum to 1.	Transition Matrices can be derived from asset life values. To do this, specify an Asset
	-> VG	-> G	-> F		-> VP		Life (in years) in the input box below, then dick the '<
V	5 0.84	0.16	0	0	0		Derive Matrix from Asset Life' button.
	G	0.84	0.16	0	0		
		F	0.84	0.16	0		Asset Life: 25
			P	0.84	0.16		<- Derive Matrix from Asset Life
						[Cancel Save & Exit

Figure 4.10: Transition matrix in matrix format (Lighting Column Toolkit)

- iii. Click the '<- Derive Matrix from Asset Life' button.
- iv. Click the 'Save & Exit' button.

Viewing Deterioration Profile

- 4.19 The deterioration profile of an existing TPM can be viewed graphically as follows:
 - i. From the **'Transition Matrices'** worksheet, select a TPM and click the **'View/Edit Matrix'** button. A transition matrix pop-up window (Figure 4.8) will appear.
 - ii. Select the 'Deterioration Profile' tab at the top of the transition matrix pop-up window.
 - iii. Specify 'Initial Condition Values' in the input cells adjacent to the Condition Bands and enter the duration of the scenario in the 'Analysis Period' input cell. The sum of the Initial Condition Values must add up to 100% and the Analysis Period input must be a numeric value between 5 and 30.
 - iv. Click the 'Show/Update Profile' button to generate the deterioration profile (Figure 4.11).

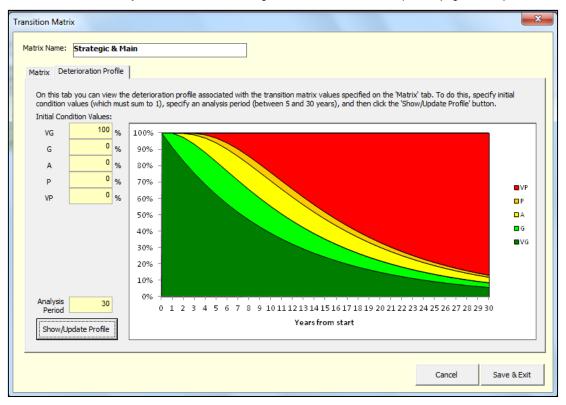


Figure 4.11: Deterioration profile using data from Figure 4.7

TREATMENT EFFECTS AND COSTS

- 4.20 The **'3 Treatment Effects & Costs'** worksheet allows users to define the following for each Homogeneous Asset Group:
 - Effect of Treatment on Homogeneous Asset Groups
 - Effect of Treatment on Condition Band
 - Treatment unit costs

Specifying the Effect of Treatments on Homogeneous Asset Groups

4.21 The **'After-Treatment Asset Group'** column (Figure 4.12) is used to model the effect of a given treatment on the performance (in terms of deterioration) of the Homogeneous Asset Group to which the treatment is associated. This facility is useful in studies such as the replacement of footways previously constructed using flags with a footway with bituminous surfacing. Before specifying the after treatment asset group, ensure that the new Homogeneous Asset Group and associated TPMs should have been defined as described earlier in this Section.

4.22 To specify the After-Treatment Asset Group, for each Homogeneous Asset Group, select an option from the drop menu as illustrated in Figure 4.12.

					Effect o	of treatn	nent			
					1	2	3	4	5	
No	Asset Group	Treatment	Treatment Details	After-treatment Asset Group	VG	G	F	Р	VP	Validity Check
	FI- - -	1	Lift Re-lay	No Change	VG	VG	G	G	F	OK
1	Flags	2	Replacement [Bituminous]	Bituminous	VG	VG	VG	VG	VG	OK
2	Bituminous	1	Lift Re-lay	No Change	None	None	None	None	None	OK
2	Bituminous	2	Replacement [Bituminous]	No Change	🖵 VG	VG	VG	VG	VG	OK

Figure 4.12: After Treatment Asset Group

4.23 Notes to Figure 4.12:

- The Asset Group 'Flags' refers to footways constructed using flags.
- The Asset Group 'Bituminous' refers to footways with bituminous surfacing.
- **'Lift and Re-lay'** refers to a treatment that in this example is applicable to Flags homogeneous asset group only.
- 'Replacement [Bituminous]' refers to treatment that can be used to replace existing bituminous footways
 or flags. When applied to flags, the proportions of flags treated will be moved to the Bituminous Treatment
 group after Treatment.

Specifying the Effect of Treatments on Condition Band

4.24 The effect of each Treatment on Condition Band can be specified by selecting appropriate options from drop down menus (Figure 4.13).

					Effect o	of treatn	nent			
					1	2	3	4	5	
No	Asset Group	Treatment	Treatment Details	After-treatment Asset Group	VG	G	F	Р	VP	Validity Check
1	ГI	1	Lift Re-lay	No Change	VG	VG	G	G	F	ОК
1	Flags	2	Replacement [Bituminous]	Bituminous	VG	VG	VG	VG	VG	ĴК
								None VG G F P VP		

Figure 4.13: Treatment Effects

4.25 For example, in Figure 4.13 the effect of Replacement [Bituminous] Treatment on the Flags asset group is specified as shown in Table 4.1 as follows:

Asset Condition	After-Treatment Asset Group	Effect of Treatment on Condition
VP (Very Poor)	Bituminous	Improves condition to Very Good (VG)
P (Poor)	Bituminous	Improves condition to Very Good (VG)
F (Fair)	Bituminous	Improves condition to Very Good (VG)
G (Good)	Bituminous	Improves condition to Very Good (VG)
VG (Very Good)	Bituminous	None (No effect)

Table 4.1: Effect of Replacement [Bituminous] Treatment on Condition

Unit costs of Treatments

4.26 Unit costs of Treatments are specified by Condition Band as illustrated in Figure 4.14. It is assumed that the unit costs specified include all relevant components such as traffic management and overheads. The input cells for **'Unit Costs'** must not be left blank. Users have to define unit costs that are appropriate for the network they are analysing.

						Treatmer	nt Cost (£)		
				1	2	3	4	5	
No	Asset Group	Treatment	Treatment Details	VG	G	F	Ρ	VP	Units (£ per)
1	Flags	1	Lift Re-lay	18.51	18.51	18.51	18.51	18.51	m²
1	Flags	2	Replacement [Bituminous]	19.82	10	10	10	10	
2	Bituminous	1	Lift Re-lay	0	0	0	0	0	m²
2	Bituminous	2	Replacement [Bituminous]	19.82	19.82	19.82	19.82	19.82	

Figure 4.14: Unit Costs of Treatments

(Note: unit costs values in Figure 4.14 are for the purposes of illustration only)

TREATMENT STRATEGIES

- 4.27 The Toolkit assumes that Treatments are applied to Homogeneous Asset Groups at the end of each year, after deterioration as illustrated in Figure 4.15. A Treatment Strategy refers to a single Treatment or a group of Treatments that can be used to treat proportions of assets in a particular Condition Band. Treatment Strategies can be defined in the **'Treatment Strategies'** worksheet. The worksheet provides users with the options to:
 - Define a new strategy.
 - Modify an existing strategy.
 - Delete an existing strategy.

Figure 4.15: Sequence deterioration, treatment intervention and treatment effects

Defining a New Treatment Strategy

- i. Click the 'Add Strategy' button in the 'Treatment Strategies' worksheet (Figure 4.16). A new Treatment Strategy will be added below the list of existing strategies.
- ii. Specify the name of the Treatment Strategy in the 'Name' column.
- iii. Select the '**Treatments**' (from the drop down menu) that should be applied on a step-by-step basis, the first step being the highest priority step in the Strategy Treatment, and the last step being the one of lowest priority. This priority should reflect the treatment strategy to be analysed.
- iv. Specify the asset Condition Band that should be treated in each step by selecting from the drop down list.
- v. In the **'%Treated'** column, specify the maximum percentage of the assets in the Condition Band (specified in step 4 above) that should be treated in each Treatment step (see Figure 4.16).
- vi. Note that the total percentage of assets that should be treated in a particular Condition Band should not exceed 100%.

Add Stra	tegy Del	ete Strategy	Add Step	Del ete Step						
Serial	Name	Step	Treatment	Condition Band	% Treated	VG	G	F	Р	VP
		1	Surface Dressing	G	20%		20%			
		2	Micro Asphalt	G	20%		20%			
1	Strat #1	3	Moderate Inlay	F	20%			20%		
T		4	Moderate Overlay	F	20%			20%		
		5	Deep Inlay	Р	20%				20%	
		6	Reconstruction	VP	20%					20%
		1	Surface Dressing	G	50%		50%			
		2	Micro Asphalt	G	50%		5 0%			
2	Strat #2	3	Moderate Inlay	F	30%			30%		
2	5ti dt. #2	4	Moderate Overlay	F	30%			30%		
		5	Deep Inlay	Р	40%				40%	
		6	None	•						
		Micro A Modera	te Inlay te Overlay nlay							

Figure 4	.16:	Treatment	Strategy
----------	------	-----------	----------

- 4.28 Using the illustration in Figure 4.16, Treatment Strategy 'Strat. #1' treats up to:
 - 40% of Good (G) assets in an Asset Group (using Surface Dressing and Micro Asphalt).
 - 40% of Fair (F) assets in an Asset Group (using Moderate Inlay and Moderate Overlay).
 - 20% of Poor (P) assets in an Asset Group (using Deep Inlay).
 - 20% of Very Poor (VP) assets in an Asset Group (using Reconstruction).
- 4.29 Treatment Strategies are associated with specific Homogeneous Asset Groups in the 'Scenario' worksheet. Treatment Strategies can be combined with either Budget Constraints or Performance Targets as required, depending on the scenario being modelled. When Treatment Strategies are combined with Budget Constraints or Performance Targets, Treatments are applied in Step order (starting with Step 1) until the specified budget is exhausted, or the Performance Target achieved, or alternatively; until all the steps in the Treatment Strategy have been applied.

Modifying an Existing Treatment Strategy

- 4.30 Existing Treatment Strategies can be modified by making changes to input cells in the '**Treatment Strategies**' worksheet.
- 4.31 The input cells that can be modified are:
 - Name of Treatment Strategy.
 - Treatment.
 - Condition Bands being treated.
 - The percentage of the assets being treated by each treatment.

Deleting an Existing Treatment Strategy

- i. Select the name of the Treatment Strategy to be deleted and click on the 'Delete Strategy' button. A popup window will appear requiring the user to confirm if they would like to delete the selected Treatment Strategy.
- ii. Click '**Yes'** on the pop-up window to delete the Treatment Strategy or click '**No'** if you would like to keep the selected Treatment Strategy.

BUDGETS

- 4.32 The **'5 Budgets'** worksheet (illustrated in Figure 4.17) is used to define annual Budget Constraints for each Treatment Type. Users can perform the following actions in the **'Budgets'** worksheet:
 - Define a new budget.
 - Modify an existing budget.
 - Delete an existing budget.

Add Budget Delete Budget		Del ete Budget				
Serial	erial Name		Treatment	Budget constraints (£ 000s)	Total (£ 000s)	
			Surface Dressing	100		
	Dudat Nore 1	Micro Asphalt	100			
1		Moderate Inlay	200	1 1 0 0		
1	Budget Num. 1		Moderate Overlay	150	1,100	
			Deep Inlay	200		
			Reconstruction	350		
			Surface Dressing	320		
		Micro Asphalt	210			
2	Dudget	Aluma 2	Moderate Inlay	310		
2	Budget Num. 2	Moderate Overlay	320	2,000		
			Deep Inlay	330		
			Reconstruction	510		

Figure 4.17: Budgets

Defining a New Budget

- i. Click on the 'Add Budget' button on the 'Budgets' worksheet. A new budget will be added at the bottom of the list of existing budgets.
- ii. Specify the name of the budget in the 'Name' column.
- iii. Specify the annual budget available for each Treatment Type in thousands in the 'Budget Constraint' column. For example, if the annual budget available for Surface Dressing Treatment is £100,000, then it should be specified in the Toolkit as 100.
- iv. The 'Total' column displays the total budget assigned to all Treatment Types.
- 4.33 Each new budget is defined by specifying the following:
 - **'Name'**: name of the budget.
 - 'Budget Constraint': the annual budget available for each Treatment Type (specified in thousands).
- 4.34 For example, in Figure 4.17, the specification of Budget 'Budget Num. 1' is interpreted as follows:
 - Annual Budget Constraint for Surface Dressing is £100,000.
 - Annual Budget Constraint for Micro Asphalt is £100,000.
 - Annual Budget Constraint for Moderate Inlay is £200,000.
 - Annual Budget Constraint for Moderate Overlay is £150,000.
 - Annual Budget Constraint for Deep Inlay is £200,000.
 - Annual Budget Constraint for Reconstruction is £350,000.
- 4.35 Budgets are associated to Homogeneous Asset Groups in the 'Scenario' worksheet.

Modifying an Existing Budget

4.36 Existing Budgets can be modified by making changes to input cells in the 'Budgets' worksheet.

Deleting an Existing Budget

- i. Select the name of the budget to be deleted and click on the **'Delete Budget'** button. A pop-up window requiring the user to confirm if the selected budget should be deleted is displayed.
- ii. Click on 'Yes' to delete the Treatment Strategy or click 'No' if you would like to keep the selected budget.

PERFORMANCE TARGETS

- 4.37 The '6 Performance Target' worksheet (illustrated in Figure 4.18) provides options for:
 - Defining a new performance target.
 - Modifying an existing performance target.
 - Deleting an existing performance target.

Defining a New Performance Target

i. Click 'Add Performance Target' button on the 'Performance Targets' worksheet. New input cells for the definition of Performance Targets are added at the bottom of the existing Performance Target(s). An error message prompting the user to update/enter a performance indicator is displayed (see Figure 4.18).

Add I	Performance Targ	jet Delete P			
No.	Name	Performance Indicator	Expression	Performance Target (%)	
1	VG>=50%	VG	>=	50%	
2	Target #2				Error: Update/enter a performance indicator

Figure 4.18: Performance Targets

- ii. Enter the name of the new Performance Target in the 'Name' column.
- iii. Click on the input cell in the **'Performance Indicator'** column and select an indicator from the drop down list. Performance targets can be specified for the following Condition Bands:
 - The highest ranked (best) Condition Band.
 - \circ $\;$ Total of the highest ranked and the next highest ranked Condition Band.
 - The lowest ranked (worst) Condition Band.
 - \circ $\;$ Total of the lowest ranked and the next lowest ranked Condition Band.
- 4.38 For example, if the following Condition Bands are defined in the '**Input Sheet**' worksheet: Very Good (VG), Good (G), Fair (F), Poor (P) and Very Poor (VP), then the following Performance Indicators can be selected from the '**Performance Targets**' worksheet:

0	VG	(Very Good)
0	VG & G	(Total in Very Good and Good Condition Bands)
0	VP	(Very Poor)
0	VP & P	(Total in Very Poor and Poor Condition Bands)

4.39 Select an appropriate expression (=, >= or <=) for the performance indicator selected in step 3 from the drop down list in the **'Expression'** column. Expressions should be assigned to performance indicators in accordance with guidance in Table 4.2. An error message will be displayed if an invalid Expression is selected.

Exp	ression	Performance Indicators			
= (equal to)		Applicable to all Performance Indicators			
>=	(greater or equal to)	Highest ranked Condition Band (e.g. VG)			
		Total of the highest ranked and the next highest ranked Condition Band (e.g. VG + G) $$			
<=	(less or equal to)	The lowest ranked (worst) Condition Band (e.g. VP)			
		Total of the lowest ranked and the next lowest ranked Condition Band			

Table 4.2: Associating I	Expressions to	Performance Indicat	tors
--------------------------	----------------	---------------------	------

4.40 Specify the Performance Target as a numeric value in % in the '**Performance Target**' column. Performance targets are assigned to Homogeneous Asset Groups in the '**Scenario**' worksheet.

Modifying an Existing Performance Targets

4.41 Existing performance targets can be modified by making changes to input cells in the **'Performance Targets'** worksheet.

Deleting a Performance Target

- 4.42 Select the name of the Performance Target to be deleted and click on the '**Delete Performance Target**' button Figure 4.18. A pop-up window requiring the user to confirm if the selected Performance Target should be deleted is displayed.
- 4.43 Click on **'Yes'** to delete the Performance Target or click **'No'** if you would like to keep the selected Performance Target.

5 SETTING UP SCENARIOS AND RUNNING THE TOOLKIT

SETTING UP ANALYSIS SCENARIOS

5.1 The **'7 - Scenario'** worksheet (Figure 5.1) provides options for setting up Analysis Scenarios including:

- Naming Analysis Scenarios.
- Assigning TPMs to Homogeneous Asset Groups and Analysis Scenarios.
- Assigning Treatment Strategies to Homogeneous Asset Groups and Analysis Scenarios.
- Assigning Budget Constraints to Homogeneous Asset Groups and Analysis Scenarios.
- Assigning Performance Targets to Homogeneous Asset Groups and Analysis Scenarios.

R	Run Analysis Clear selected row(s) Copy selected row(s) Paste copied row(s)								
		l		1	2	3			
No.	Homogeneous Group	Scenario Name	Criteria	2012	2013	2014			
			Transition matrix	Strat&Main	Strat&Main	Strat&Main			
1	1 Strategic & Main	Do Nothing	Treatment strategy						
		Do Notilling	Budget constraint						
			Performance target						
			Transition matrix	Secondary	Secondary	Secondary			
2	Secondary	Do Nothing	Treatment strategy						
	Secondary	Do Notimig	Budget constraint						
			Performance target						

Naming Analysis Scenarios

- 5.2 An Analysis Scenario can be defined for each Homogeneous Asset Group. The name of each Analysis Scenario is specified in the '**Scenario Name'** column (Figure 5.1). As the name specified will be automatically populated into the output sheet graph titles, it should be short and concise.
- 5.3 The Toolkit does not allow the definition of multiple Analysis Scenarios for a given Homogeneous Asset Group. If the user wants to create more than one Analysis Scenario for a Homogeneous Asset Group, then several versions of the Toolkit (as many as there are Analysis Scenarios) will need to be created. Comparisons of the results of different Analysis Scenarios need to be carried out outside of the Toolkit. It is good practice to record such results in a spreadsheet that clearly shows: the Toolkit version number, a description of the analysis scenario, the date of the analysis, and the name or initials of the person who carried out the analysis.

Assigning Transition Probability Matrix to Asset Groups and Analysis Scenarios

- i. Transition Probability Matrices (TPMs) must be assigned to all Asset Groups, Analysis Scenarios and years before running the Toolkit.
- ii. In the 'Scenario' worksheet, click on the input cell corresponding to the 'Transition Matrix' row and the first year of analysis.
- iii. Select the appropriate pre-defined TPM from the drop down list on the 'Transition Matrix' row. The TPM should have already been defined by the user in the 'Transition Matrices' worksheet as explained in Section 4.
- iv. Repeat the above steps for all Homogeneous Asset Groups, Analysis Scenarios and years. This can be facilitated by the 'Clear selected row(s)', 'Copy selected row(s)' and 'Paste selected rows' buttons, as explained below.

Assigning Treatment Strategy to Asset Groups and Analysis Scenarios

- 5.4 Steps for assigning Treatment Strategies to Homogeneous Asset Groups and Analysis Scenarios are as follows:
 - i. In the '**Scenario**' worksheet, click on the input cell corresponding to the Treatment Strategy row and the year in which the Treatment Strategy is applicable.
 - ii. Select the appropriate pre-defined Treatment Strategy from the drop down list. The desired Treatment Strategy should have been defined in the **'Treatment Strategies'** worksheet in Section 4.
 - iii. Repeat the above steps for all Homogeneous Asset Groups, Analysis Scenarios and years for which the Treatment Strategies are intended. This can be facilitated by the 'Clear selected row(s)', 'Copy selected row(s)' and 'Paste selected rows' buttons, as explained below.

Assigning Budget Constraints to Asset Groups and Analysis Scenarios

- 5.5 The Budget Constraint input in the **'Scenario'** worksheet should be left blank if the analysis is not constrained by budget. Budget Constraints can be assigned as follows:
 - iv. In the 'Scenario' worksheet, click on the input cell corresponding to the 'Budget Constraint' row and the year to which Budget Constraint should be applied.
 - v. Select the appropriate pre-defined **Budget** from the drop down list. Budget Constraints are defined in the **'Budgets'** worksheet as described in Section 4.
 - vi. Repeat the above steps for all Homogeneous Asset Groups, Analysis Scenarios and years for which Budget Constraints are intended. This can be facilitated by the 'Clear selected row(s)', 'Copy selected row(s)' and 'Paste selected rows' buttons, as explained below.

Assigning Performance Targets to Asset Groups and Analysis Scenarios

- 5.6 The Performance Target input cells in the '**Scenario**' worksheet should be left blank if the analysis is not constrained by pre-defined Performance Targets. Performance Targets can be assigned to Homogenous Asset Groups as follows:
 - vii. In the 'Scenario' worksheet, click on the input cell corresponding to the 'Performance Target' row and the year which the Performance Target is intended.
 - viii. Select the appropriate pre-defined **Performance Target** from the drop down list. Performance targets are defined in the '**Performance Targets**' worksheet.
 - ix. Repeat the above steps for all Homogeneous Asset Groups, Analysis Scenarios and years for which performance targets are intended. This can be facilitated by the 'Clear selected row(s)', 'Copy selected row(s)' and 'Paste selected rows' buttons, as explained below.
- 5.7 It should be noted that Performance Targets and Budget Constraints cannot be assigned together in the same year. For any Homogeneous Asset Group and Analysis Scenario, for example, when a Performance Target is assigned to a particular year then the corresponding Budget Constraint input is automatically set to blank and becomes read-only as illustrated in Figure 5.2. Similarly, when Budget Constraint is set then Performance Target is automatically set to blank and becomes read-only.

R	ull Alidiysis	ar selected Copy select row(s) row(s)	ed Paste copied row(s)			
					2	3
No.	Homogeneous Group	Scenario Name	Criteria	2012	2013	2014
			Transition matrix	STR&M	STR&M	STR&M
1	Strategic & Main	Base	Treatment strategy	Preventative	Preventative	Preventative
1	Strategic & Main	Dase	Budget constraint			£1.1m/Year
			Performance target	(VG+G) >= 70%	(VG+G) >= 70%	

Figure 5.2: Assignment of Budget Constraints and Performance Targets to Analysis Scenarios

Clear a row

- i. To clear a Transition Matrix, Treatment Strategy, Budget Constraints or Performance Target row, select any input cell on the row and click on the 'Clear selected row(s)' button.
- ii. You will be asked to confirm if you wish to continue. If you are sure then click on the '**Yes**' button otherwise click on the '**No**' button.

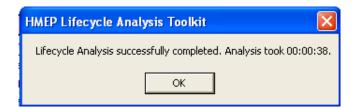
Copy and Paste a row

- i. To copy a Transition Matrix, Treatment Strategy, Budget Constraints or Performance Target row, select any input cell on the row and click on the 'Copy selected row(s)' button.
- ii. To paste the copied row into a destination row, select any input cell in the destination row and click on the 'Paste selected row(s)' button.
- iii. You will be asked to confirm if you wish to continue. If you are sure then click on the 'Yes' button otherwise click on the 'No' button. Any previous value in the destination row will be overwritten with the copied values.

RUNNING THE TOOLKIT

- i. Click on the 'Run WLC Analysis...' button on the 'Scenario' worksheet to run the Lifecycle Planning Toolkit.
- ii. The Toolkit automatically validates all inputs. The location of any errors in the input data will be displayed in a pop-up window (e.g. Figure 5.3). Click **'OK'**, correct errors and re-run the Toolkit. Note that it is good practice to save the Toolkit before each run.

HMEP L	ifecycle Analysis Toolkit 🛛 🔀					
⚠	There are errors in the input data. These errors must be corrected before a programme can be generated. The errors are located on the following worksheet(s):					
	1 - Homog Asset Groups: some inputs have not been specified					
	3 - Treatment Types: some inputs have not been specified					
	OK					


Figure 5.3: Sources of Errors in Input Data

iii. The progress of the analysis is displayed on the status bar located at bottom of the worksheet (Figure 5.4).

Figure 5.4: Analysis Progress

iv. The pop-up window (Figure 5.5) indicating the duration of the analysis is displayed following the completion of a successful run.

Figure 5.5: Successful Run

5.8 Table 5.1 indicates typical analysis durations by the number of asset groups modelled. Please note that the duration of each run is dependent on several different factors, including model specific factors, such as the number of condition bands and Treatment Types created, and non-model specific factors, such as the hardware and operating system of the computer being used.

Number of Asset Groups	Analysis Duration
3 Asset Groups	14 Seconds
5 Asset Groups	37 Seconds
10 Asset Groups	2 Minutes
30 Asset Groups	20 Minutes
50 Asset Groups	54 Minutes

Table 5.1: Typical Run Durations

6 ANALYSING OUTPUTS

UNDERSTANDING THE OUTPUTS

- 6.1 The following outputs are produced by the Toolkit:
 - Condition by Year.
 - Condition Graph.
 - Work Quantity.
 - Work Quantity Graph.
 - Expenditure by Condition Band.
 - Expenditure by Condition Graph.
 - Areas or Asset Quantities by Year.
- 6.2 Note that the examples provided in this section are for the purposes of illustration only. Worked examples are available in Sections 7, 8 and 9.

Condition by Year

6.3 Tabulated outputs of condition by year for each Homogeneous Asset Group is provided in the worksheet labelled **'8 – Condition by Year'**. A 5-year extract of the output is illustrated in Figure 6.1. The **'Initial Distribution'** column reports the current or base condition of the Homogeneous Asset Group. Subsequent columns report the projected condition at the end of each year.

			Initial Distribution	End of Year			
Asset Group	No.	Cond	2012	2012	2013	2014	2015
	1	VG	29.56%	28.19%	27.37%	26.88%	26.57%
	2	G	44.34%	41.11%	38.24%	35.79%	33.73%
Strategic & main	3	F	20.40%	23.52%	25.37%	26.27%	26.50%
	4	Р	3.42%	2.24%	2.59%	2.79%	2.89%
	5	VP	2.28%	4.95%	6.44%	8.27%	10.31%
	1	VG	26.04%	26.46%	26.81%	27.10%	27.35%
	2	G	39.06%	36.71%	34.81%	33.27%	32.02%
Secondary	3	F	25.60%	26.22%	26.37%	26.19%	25.79%
	4	Р	5.58%	7.01%	8.31%	9.43%	10.34%
	5	VP	3.72%	3.59%	3.70%	4.01%	4.50%
	1	VG	24.76%	25.43%	26.00%	26.51%	26.95%
	2	G	37.14%	35.24%	33.68%	32.39%	31.34%
Link	3	F	31.30%	31.20%	30.87%	30.38%	29.79%
	4	Р	4.08%	5.54%	6.80%	7.85%	8.71%
	5	VP	2.72%	2.59%	2.64%	2.86%	3.22%
	1	VG	17.20%	17.69%	18.12%	18.51%	18.85%
	2	G	25.80%	24.76%	23.89%	23.16%	22.56%
Local	3	F	30.00%	29.44%	28.83%	28.19%	27.54%
	4	Р	16.20%	17.02%	17.68%	18.21%	18.60%
	5	VP	10.80%	11.09%	11.48%	11.93%	12.45%

Figure 6.1: Condition by Year

Condition Graph

6.4 Graphs of predicted condition profile for each Homogeneous Asset Group are reported in the worksheet labelled '9 – Condition Graph'. A drop down menu is used to select outputs for each Homogenous Asset Group as illustrated in Figure 6.2. The type of graph produced is dependent on the type of graph chosen in '0 – Input Sheet' as is described in Section 4.

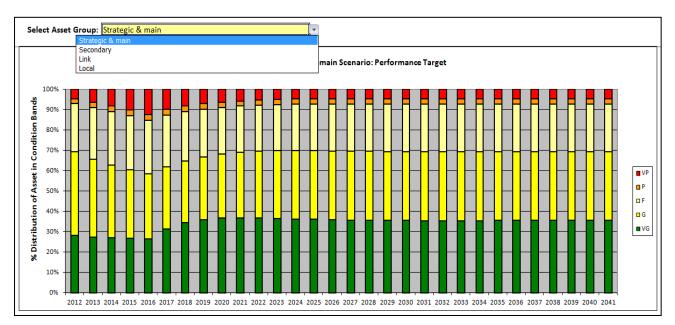


Figure 6.2: Condition Graph

Work Quantity

6.5 Tabulated outputs of work quantity by Treatment and year for each Homogeneous Asset Group is provided in the worksheet labelled **'10 – Work Quantity'**. A 3-year extract of this output is illustrated in Figure 6.3.

Asset Group	Treatment	Total (m²)	2012	2013	2014
	Surface Dressing	16,462	466	466	466
	Micro Asphalt	16,502	474	474	474
	Moderate Overlay	99,848	2,818	2,818	2,818
Strategic & main	Moderate Inlay	99,849	2,818	2,818	2,818
	Thick Overlay	215,440	6,196	7,143	7,704
	Reconstruction	257,626	2,542	2,542	2,542
	Total	705,728	15,313	16,260	16,821
	Surface Dressing	4,559	125	125	125
	Micro Asphalt	4,568	127	127	127
	Moderate Overlay	26,116	737	737	737
Secondary	Moderate Inlay	26,129	740	740	740
	Thick Overlay	63,307	1,710	1,710	1,710
	Reconstruction	38,661	983	983	983
	Total	163,340	4,423	4,423	4,423
	Surface Dressing	2,330	72	72	72
	Micro Asphalt	2,319	69	69	69
	Moderate Overlay	7,430	212	212	212
Link	Moderate Inlay	7,414	208	208	208
	Thick Overlay	37,014	1,020	1,020	1,020
	Reconstruction	12,501	327	327	327
	Total	69,009	1,908	1,908	1,908
	Surface Dressing	2,559	72	72	72
	Micro Asphalt	2,548	69	69	69
	Moderate Overlay	2,583	73	73	73
Local	Moderate Inlay	2,587	74	74	74
	Thick Overlay	38,586	1,075	1,075	1,075
	Reconstruction	83,445	2,280	2,280	2,280
	Total	132,308	3,643	3,643	3,643

Figure 6.3: Work Quantity (m²)

Work Quantity Graph

6.6 Graphs of predicted work quantity by Treatment Type for each Homogeneous Asset Group are reported in the worksheet labelled **'11 – Work Qty Graph'**. A drop down menu is used to select the graphs for each Homogenous Asset Group as illustrated in Figure 6.4.

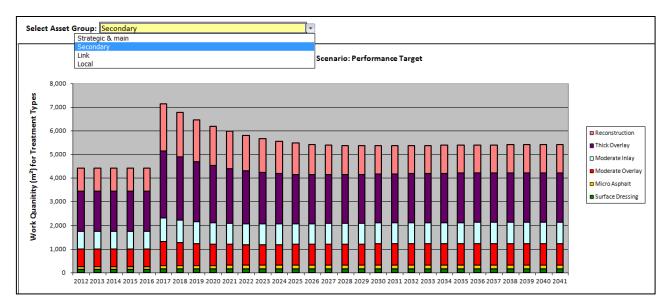
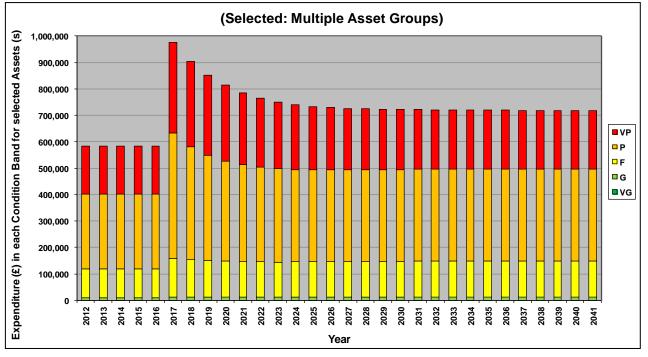


Figure 6.4: Work Quantity Graph

Expenditure by Condition Band

6.7 Tabulated outputs of predicted expenditure by Condition Band and year for each Homogeneous Asset Group is provided in the worksheet labelled **'12 – Exp by Cond Band'**. A 4-year extract of this output is illustrated in Figure 6.5.

Asset Group	Condition Band	Analysis Period Total (£)	2012	2013	2014	2015
	VG	0	0	0	0	0
	G	66,968	6,697	6,697	6,697	6,697
	F	804,280	80,428	80,428	80,428	80,428
Strategic & Main	Р	2,057,120	205,712	205,712	205,712	205,712
	VP	746,840	74,684	74,684	74,684	74,684
	Total	3,675,208	367,521	367,521	367,521	367,521
	Cumulative	3,675,208	367,521	735,042	1,102,562	1,470,083
	VG	0	0	0	0	0
	G	18,280	1,828	1,828	1,828	1,828
	F	210,528	21,053	21,053	21,053	21,053
Secondary	Р	342,328	34,233	34,233	34,233	34,233
	VP	289,088	28,909	28,909	28,909	28,909
	Total	860,224	86,022	86,022	86,022	86,022
	Cumulative	860,224	86,022	172,045	258,067	344,090
	VG	0	0	0	0	0
	G	9,104	910	910	910	910
	F	60,224	6,022	6,022	6,022	6,022
Link	Р	204,400	20,440	20,440	20,440	20,440
	VP	95,968	9,597	9,597	9,597	9,597
	Total	369,696	36,970	36,970	36,970	36,970
	Cumulative	369,696	36,970	73,939	110,909	147,878
	VG	0	0	0	0	0
	G	10,096	1,010	1,010	1,010	1,010
	F	21,032	2,103	2,103	2,103	2,103
Local	Р	214,832	21,483	21,483	21,483	21,483
	VP	670,472	67,047	67,047	67,047	67,047
	Total	916,432	91,643	91,643	91,643	91,643
	Cumulative	916,432	91,643	183,286	274,930	366,573
	VG	0	0	0	0	0
	G	104,448	10,445	10,445	10,445	10,445
	F	1,096,064	109,606	109,606	109,606	109,606
Total Expenditure	Р	2,818,680	281,868	281,868	281,868	281,868
	VP	1,802,368	180,237	180,237	180,237	180,237
	Total	5,821,560	582,156	582,156	582,156	582,156
	Cumulative	5,821,560	582,156	1,164,312	1,746,468	2,328,624


Figure 6.5: Expenditure (£) by Condition

Expenditure by Condition Graph

- 6.8 Graphs of predicted expenditure by Condition Band for each Homogeneous Asset Group are reported in the worksheet labelled **'13 Exp by Cond Graph'**. The worksheet contains a facility which allows users to select and display expenditure by condition graphs for multiple assets as follows:
 - i. Click the 'Select/View Asset Groups...' button on the '13 Expenditure by Cond Graph' worksheet.
 - ii. From the pop-up window (Figure 6.6) select the asset groups to display on the graph.
 - iii. To select all assets click the 'Select All' button on pop-up window. To clear all selections click the 'Clear All' button.
 - iv. Click 'OK' to display graphs for selected asset groups (illustrated in Figure 6.7).

Select Asset	Groups	×
Select asse	t groups to display on graph: egic & main ndary	
Select A	NI Clear All Ol	K Cancel

Figure 6.6: Selecting Asset Groups

Expenditure by Treatment

6.9 Tabulated outputs of predicted expenditure by Treatment and year for each Homogeneous Asset Group are provided in the worksheet labelled **'14 – Exp by Treatment'**. A 4-year extract of this output is illustrated in Figure 6.8.


Asset Group	Treatment	Analysis Period Total (£)	2012	2013	2014	2015
	Surface Dressing	26,256	2,626	2,626	2,626	2,626
	Micro Asphalt	40,712	4,071	4,071	4,071	4,071
	Moderate Overlay	385,672	38,567	38,567	38,567	38,567
	Moderate Inlay	418,608	41,861	41,861	41,861	41,861
Strategic & Main	Thick Overlay	2,057,120	205,712	205,712	205,712	205,712
	Reconstruction	746,840	74,684	74,684	74,684	74,684
	Total	3,675,208	367,521	367,521	367,521	367,521
	Cumulative	3,675,208	367,521	735,042	1,102,562	1,470,083
	Surface Dressing	7,168	717	717	717	717
	Micro Asphalt	11,112	1,111	1,111	1,111	1,111
	Moderate Overlay	100,952	10,095	10,095	10,095	10,095
	Moderate Inlay	109,576	10,958	10,958	10,958	10,958
Secondary	Thick Overlay	342,328	34,233	34,233	34,233	34,233
	Reconstruction	289,088	28,909	28,909	28,909	28,909
	Total	860,224	86,022	86,022	86,022	86,022
	Cumulative	860,224	86,022	172,045	258,067	344,090
	Surface Dressing	3,568	357	357	357	357
	Micro Asphalt	5,536	554	554	554	554
	Moderate Overlay	28,880	2,888	2,888	2,888	2,888
	Moderate Inlay	31,344	3,134	3,134	3,134	3,134
Link	Thick Overlay	204,400	20,440	20,440	20,440	20,440
	Reconstruction	95,968	9,597	9,597	9,597	9,597
	Total	369,696	36,970	36,970	36,970	36,970
	Cumulative	369,696	36,970	73,939	110,909	147,878
	Surface Dressing	3,960	396	396	396	396
	Micro Asphalt	6,136	614	614	614	614
	Moderate Overlay	10,088	1,009	1,009	1,009	1,009
	Moderate Inlay	10,944	1,094	1,094	1,094	1,094
Local	Thick Overlay	214,832	21,483	21,483	21,483	21,483
	Reconstruction	670,472	67,047	67,047	67,047	67,047
	Total	916,432	91,643	91,643	91,643	91,643
	Cumulative	916,432	91,643	183,286	274,930	366,573
	Surface Dressing	40,952	4,095	4,095	4,095	4,095
	Micro Asphalt	63,496	6,350	6,350	6,350	6,350
	Moderate Overlay	525,592	52,559	52,559	52,559	52,559
Total Expenditure	Moderate Inlay	570,472	57,047	57,047	57,047	57,047
	Thick Overlay	2,818,680	281,868	281,868	281,868	281,868
	Reconstruction	1,802,368	180,237	180,237	180,237	180,237
	Total	5,821,560	582,156	582,156	582,156	582,156
	Cumulative	5,821,560	582,156	1,164,312	1,746,468	2,328,624

Figure 6.8: Expenditure (£) by Treatment

15 - Expenditure by Treatment Graph

6.10 Graphs of predicted expenditure by Treatment Type for each Homogeneous Asset Group are reported in the worksheet labelled **'15 – Exp by Treat Graph'**. A dropdown menu is used to select the graphs for each Homogenous Asset Group and type of Treatment as illustrated in Figure 6.9.

Figure 6.9: Expenditure by Treatment Graph

Areas by Year

6.11 Tabulated output of the areas by year for each Homogeneous Asset Group are provided in the worksheet labelled **'16 - Area by Year'** as illustrated in Figure 6.10. Changes in the areas over the years accounts for assets that moved from one Homogeneous Asset Group to another as a result of a Treatment. After-Treatment Asset Groups are defined in the worksheet **'3 - Treatment Effects and Costs'**.

			Distribution (m²)							
Asset Group	No.	Cond	2012	2012	2013	2014	2015	2016	2017	2018
	1	VG	256,824	243,983	231,784	220,194	209,185	198,726	188,789	179,350
	2	G	128,412	134,833	140,290	144,865	148,631	151,659	154,012	155,751
Flags	3	F	47,560	51,603	55,764	59,990	64,234	68,454	72,614	76,684
	4	Р	42,804	43,042	43,470	44,085	44,880	45,848	46,978	48,260
	5	VP	0	2,140	4,292	6,466	8,670	10,914	13,206	15,555
	1	VG	728,190	713,626	699,354	685,367	671,659	658,226	645,062	632,160
	2	G	453,096	458,598	463,698	468,412	472,751	476,729	480,359	483,653
Bituminous	3	F	258,912	262,796	266,712	270,651	274,607	278,570	282,533	286,489
	4	Р	178,002	179,620	181,284	182,992	184,745	186,543	188,383	190,266
	5	VP	0	3,560	7,152	10,778	14,438	18,133	21,864	25,631

Figure 6.10: Area by Year

Asset Quantity by Year

6.12 In the Ancillary Assets Toolkit, tabulated output of the areas by year for each Homogeneous Asset Group are provided in the worksheet labelled '**16 – Asset Qty by Year**' as shown in Figure 6.11. Changes in the number of units within each condition band changes each year depending upon the level of deterioration during the previous 12 months and the maintenance scenario being modelled. Note that the results shown by year are estimated as being those within a particular condition band at the end of that year. The only exception to this is within the Distribution Units column, which shows the number of assets within each condition band at the time of initial assessment.

	Distribution (units)									
Asset Group	Units	No.	Cond	2013	2013	2014	2015	2016	2017	2018
		1	VG	488	417	352	299	255	219	192
		2	G	88	152	194	220	232	236	233
Traffic Signs - Matrix and VMS	no.	3	F	38	46	63	84	105	126	143
		4	Р	6	11	17	24	34	45	58
		5	VP	6	0	0	0	0	0	0

Figure 6.11: Asset Quantity by Year

EXPORTING THE OUTPUTS

- 6.13 All tabulated outputs can be exported to other Microsoft Office programmes such as Excel and Word for further analysis or to create bespoke reports. Graphs are exported as images. Outputs can be exported as follows:
 - i. Select the desired output worksheet and click the button Located on the top right of the worksheet to copy the contents of the worksheet to the Windows Clipboard.
 - ii. Click **'OK'** when prompted with the confirmation message in Figure 6.12 and paste the copied content in a desired programme, e.g. MS Word or MS Excel.

HMEP Lifecycle Analysis Toolkit	×
Data copied to Clipboard	
ОК	

Figure 6.12: Confirmation Message for Exporting Outputs

7 WORKED EXAMPLE FOR THE CARRIAGEWAY TOOLKIT

INTRODUCTION

- 7.1 This example illustrates the application of the Lifecycle Planning Toolkit using carriageway inventory and condition data from a local highway authority in England. The example aims to demonstrate the application of the Toolkit in investigating:
 - The levels of funding required to deliver user-defined carriageway network performance standards.
 - The impact on the carriageway network performance trends as a result of budget constraints.
- 7.2 An analysis period of 30 years was used, with the start year of analysis set to 2012.

Inventory, Condition and Deterioration Models

- 7.3 The inventory data used in this example are from a local highway authority's rural road network with a total length of 102 km. The lengths and widths are aggregated into four Homogeneous Asset Groups based on road hierarchy (Strategic Routes and Main Distributors, Secondary Distributors, Link Roads and Local Access roads) as illustrated in Table 7.1. Each Homogeneous Asset Group is modelled in isolation and could be subdivided further by pavement type (e.g. flexible, flexible composite, rigid, etc), districts/areas and road type (e.g. single, dual etc) as appropriate. However, it is important to note that if the number of Homogeneous Asset Groups is too large then it becomes cumbersome to set up the Toolkit and interpret the outputs.
- 7.4 The current condition of each Homogeneous Asset Group is represented as a distribution across five Condition Bands. This is the base year or starting point for network planning in subsequent years. Consequently, the estimate of that condition is important, as are the definitions of Condition Bands, which are used to describe it.
- 7.5 For this example, default rural roads TPMs given in Appendix A and corresponding to the Homogenous Asset Groups in Table 7.1 were used. However, in practice it is more desirable to derive TPMs from observed data. A standard approach for deriving TPMs from observed data is described in Appendix A.

Hierarchy	Inve	ntory	Current Condition (% in Condition Band)						
Therarchy	Length (m)	Width (m)	VG	G	F	Р	VP		
Strategic and Main	43,264	7.8	29.56%	44.34%	20.40%	3.42%	2.28%		
Secondary Distributor	15,315	6.3	26.04%	39.06%	25.6%	5.58%	3.72%		
Link Roads	8,930	5.5	24.76%	37.14%	31.30%	4.08%	2.72%		
Local Access Roads	34,800	4.4	17.20%	25.80%	30.00%	16.20%	10.80%		

Table 7.1: Asset Inventory and Condition

7.6 Notes to Table 7.1:

- VG = Very Good
- G = Good
- F = Fair
- P = Poor
- VP = Very Poor

Treatment Types, Effects and Unit Costs

- 7.7 In this example, the following six generic Treatment Types are used:
 - Surface Dressing.
 - Micro Asphalt.
 - Moderate Overlay.
 - Moderate Inlay.
 - Deep Inlay.
 - Reconstruction.
- 7.8 For a particular Homogeneous Asset Group, these generic Treatments may be defined as illustrated in Table 7.2 from expert knowledge or recent maintenance history data. The percentages in the table indicate the percentage of the pavement layer that will be replaced or renewed and the layer thicknesses shown are indicative. For example, the Surface Dressing treatment includes 15% patching of the binder course using a suitable material.

Pavement Layer	Surface Dressing	Micro Asphalt	Moderate Inlay	Moderate Overlay	Deep Inlay	Reconstruction
Wearing Course	100% Surface Dressing	100% Micro Asphalt	100% (40mm)	100% (40mm)	100% (40mm)	100% (40mm)
Binder Course	15%	40% (60mm)	100% (60mm)	100% (60mm)	100% (60mm)	100% (60mm)
Base Course	-	15% (110mm)	15% (110mm)	15% (110mm)	30% (110mm)	100% (110mm)

Table 7.2: Typical Generic Treatment Types

7.9 The effects of the change in Condition Band (e.g. from Very Poor to Very Good) as a result of the Treatments in Table 7.2 are illustrated in Table 7.3. In practice, the change in Condition Band may be determined from maintenance records. Unit costs of Treatments used in this example are also shown in Table 7.3. These unit costs are for demonstration purposes only and should not be used in any analysis.

			Con	dition Band T	reated	
Treatment Details	Unit Costs (£/m²)	VG	G	F	Р	VP
			Effe	cts after Trea	tment	
Surface Dressing	5.58	VG	VG	G	F	Р
Micro Asphalt	8.65	VG	VG	G	F	Р
Moderate Overlay	13.70	None	VG	VG	G	F
Moderate Inlay	14.87	None	VG	VG	G	F
Deep Inlay	20.00	None	VG	VG	VG	G
Reconstruction	29.39	None	VG	VG	VG	VG

Table 7.3: Treatment Type, Unit Costs and Effects

7.10 Notes:

- VG = Very Good
- G = Good
- F = Fair
- P = Poor
- VP = Very Poor
- None = Not Applicable

Analysis Scenarios

7.11 Maintenance scenarios investigated in this example are summarised in Table 7.4.

Table 7.4: Analysis Scenarios

Scenario Name	Description
Scenario 1: Do Nothing	This Analysis Scenario is aimed at investigating the impact of not carrying out maintenance interventions on the road network.
Scenario 2: Steady State	This Analysis Scenario is aimed at determining the required funding level necessary to keep the road network at approximately the current condition state over the Analysis Period.
Scenario 3: Budget Constraint	This Analysis Scenario is intended to investigate the impact of a reduction in the steady state annual budget determined from Scenario 2 by 25% throughout the analysis period.
Scenario 4: Performance Target	This Analysis Scenario is aimed at investigating the impact of reducing the annual budget for each treatment from steady state (Scenario 2) by 25% for the first 10 years of analysis and investments required thereafter (Years 11 to 30) to return the predicted condition profile to steady state.

APPROACH

7.12 To run this example in the Toolkit, the steps set out in Table 7.5 should be followed. The '**Reference**' column refers to sections in this guidance document in which the steps were first described, whereas the table and figure numbers referred to in the '**Description**' column relate specifically to the worked example.

Steps	Descriptio	•	Reference
STEP 1 Model Setup	 Setup the Toolkit by specifying the following i Analysis Start Year: Analysis Period: Number of Condition Bands: Short code for Condition Band: Number of Homogeneous Asset Groups: Name of Homogeneous Asset Group: Number of Treatments: Treatment Name: 		Section 4
STEP 2 Inventory and Condition Data	Specify inventory and condition data in the 'H	omog Asset Groups' worksheet.	Section 4
STEP 3 Transition Matrices	Specify Transition Matrices in the 'Transition	Matrices' worksheet.	Section 4 (Figures D1, D3, D5 and D7 in Appendix A)
STEP 4 Treatment Effects and Unit Costs	Specify Treatment Effects and unit costs give Effects & Costs' worksheet for all Asset Gro		Section 4
STEP 5 Treatment Strategy	In the 'Treatment Strategies' worksheet, spe Strategy based on Analysis Scenarios (Table Treatment Strategies used in this example ar	Section 4	
STEP 6 Scenario 1: Do Nothing	 In the 'Scenario' worksheet: Select the Transition Matrix for each each year. Select the Treatment Strategy 'Do N The inputs for Budget Constraints ar left blank to simulate a 'Do Nothing 	lothing' for each year. nd Performance Targets should be	Section 5

Table 7.5: Steps for Implementing the Worked Example

Steps	Description	Reference
	Completed scenarios worksheets for this example are illustrated in Figure B2 in Appendix B. Run analysis to derive outputs for the 'Do Nothing' Analysis Scenario. Export the outputs and/or save a new version of the model. The results are discussed below.	
STEP 7 Scenario 2: Steady State	In the 'Scenario' worksheet, use the dropdown menu in the 'Treatment Strategy' row to replace 'Do Nothing' with the appropriate Treatment Strategy to each Homogeneous Asset Group, for every year of analysis. Run the Toolkit and view the results to check if the Steady State condition is achieved. If not, then return to Step 5. This is an iterative process that should be repeated until the desired output (Steady State condition) is achieved for each homogeneous group. Export the outputs and/or save a new version of the model.	Section 5
STEP 8 Budget	In the ' Budgets' worksheet, specify the budget for Scenario 3 as illustrated in Figure B3 in Appendix B. The budget values are determined by taking the annual average estimated expenditure for each Treatment Type and Homogeneous Asset Group under Scenario 2 (Steady State) and then reducing those values by 25% to give the budget for Scenario 3.	Section 4
STEP 9 Scenario 3: Budget Constraint	In the 'Scenario' worksheet, assign the Budget specified in Step 8 to the 'Budget Constraint' row for each Homogeneous Asset Group and year as illustrated in Figure B4 in Appendix B. Run the Toolkit and analyse outputs. Export the outputs and/or save a new version of the model.	Section 5
STEP 10 Performance Target	In the ' Performance Targets' worksheet specify the Performance Target to return the condition profile to steady state (Scenario 2) level as illustrated Figure B5 in Appendix B.	Section 4
STEP 11 Scenario 4: Performance Target	In the 'Scenario' worksheet, delete annual Budget assignments from the 'Budget Constraint' row for years 11 to 30. Assign the Performance Target defined in Step 10 in years 11 to 30 as illustrated in Figure B6 in Appendix B. Run the Toolkit and analyse the outputs. Export the outputs and/or save a new version of the model.	Section 5

OUTPUTS

- 7.13 The following paragraphs summarise the outputs of the analysis under the following headings:
 - Predicted condition profile.
 - Predicted expenditure.

Predicted Condition Profile

- 7.14 Predicted condition profile following each run of the Toolkit are reported in worksheets '8 Condition by Year' and '9 Condition Graph'. The Tabulated predicted condition profile can be exported to Microsoft Word, Excel or similar programmes using the export button located on the top right of the output worksheet. The exported data can then be used to produce bespoke graphs and reports.
- 7.15 In this example, the predicted condition profile data were exported to another Excel spreadsheet and predicted condition profile for the whole network that was modelled was the produced by averaging the predicted condition profile for each Homogeneous Asset Group.

Scenario 1 – Do Nothing

7.16 Figure 7.1 shows the predicted road network condition profile under Scenario 1 (Do Nothing). The proportions of assets in the Very Poor (VP) condition band increases with time. This illustrates the impact of not carrying out any treatment interventions on the road network that was modelled.

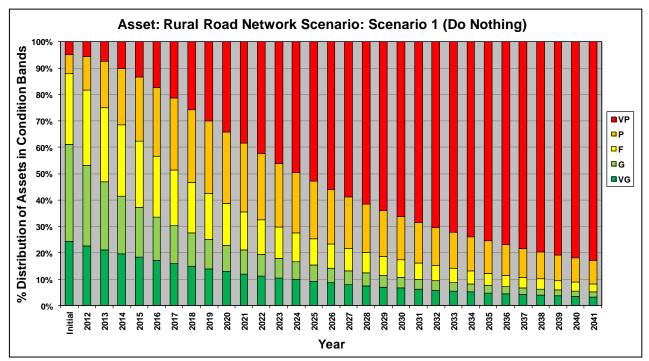


Figure 7.1: Scenario 1 (Do Nothing) Predicted Condition Profile

Scenario 2 – Steady State

7.17 The average predicted condition profile for the whole carriageway network under Scenario 2 (Steady State) is illustrated in Figure 7.2.

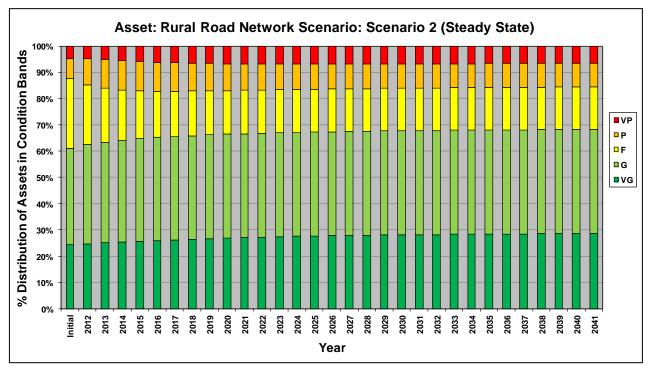
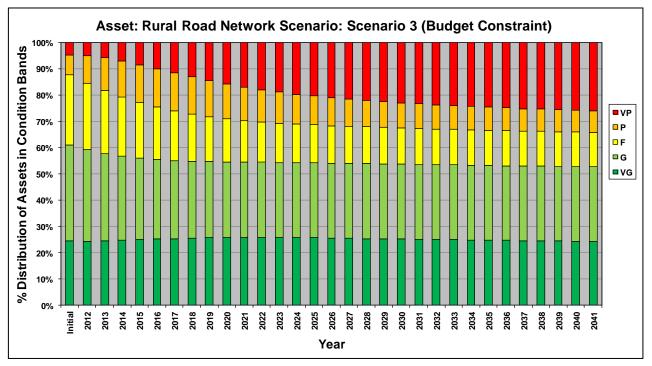



Figure 7.2: Scenario 2 (Steady State) Predicted Condition Profile

Scenario 3 - Budget Constraint

7.18 The average predicted condition profile for the whole carriageway network under Scenario 3 (Budget Constraint) is illustrated in Figure 7.3.

Scenario 4 – Performance Target

7.19 The average predicted condition profile for the whole carriageway network under Scenario 4 (Performance Target) is illustrated in Figure 7.4.

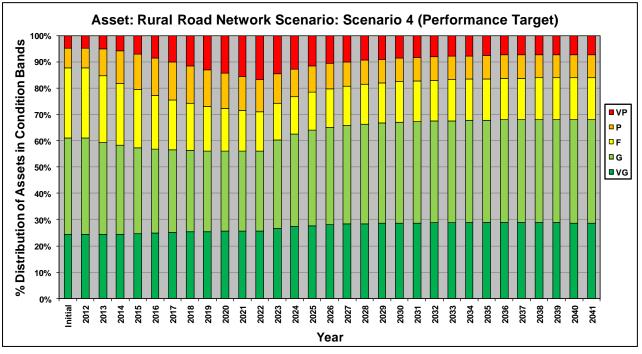


Figure 7.4: Scenario 4 (Performance Target) Predicted Condition Profile

Predicted Expenditure

7.20 Predicted annual expenditure profile for the whole carriageway network by Treatment Type for each Analysis Scenario can be found in the '**15 – Exp by Treat Graph**' worksheet. For each Analysis Scenario, the graph obtained is as follows:

Scenario 2 – Steady State

7.21 The predicted annual expenditure profile for the whole carriageway network by Treatment Type for Scenario 2 (Steady State) is illustrated in Figure 7.5 below.

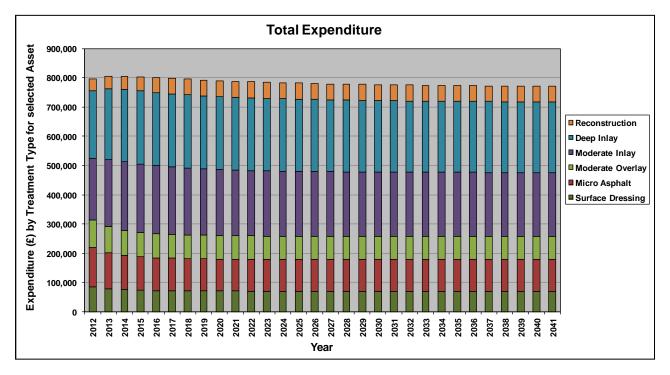


Figure 7.5: Scenario 2 (Steady State) Predicted Expenditure Profile by Treatment Type

7.22 Table 7.6 below summarises the estimated average annual expenditure by Treatment Type. This was produced outside of the Toolkit using the export functions.

Treatment	Strategic & Main	Secondary	Link	Local	Overall
Surface Dressing	46,634	15,112	3,051	6,544	71,341
Micro Asphalt	72,291	23,427	4,729	10,145	110,592
Moderate Overlay	57,247	12,368	2,996	8,034	80,645
Moderate Inlay	176,917	13,757	21,502	10,725	222,901
Deep Inlay	171,530	24,501	13,880	35,186	245,097
Reconstruction	14,601	11,204	14,659	12,204	52,668
All Treatments	539,219	100,369	60,818	82,837	783,244

Table 7.6: Average Annual Budget for Scenario 2 (Steady State) in £

Scenario 3 - Budget Constraint

7.23 Predicted annual expenditure profile for the whole carriageway network by Treatment Type under Scenario 3 (Budget Constraint) is shown in Figure 7.6 below.

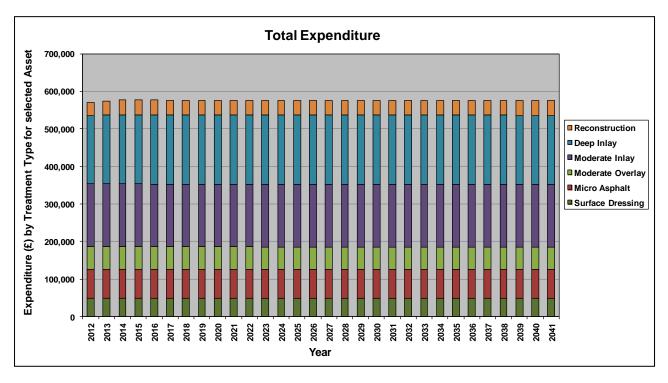


Figure 7.6: Scenario 3 (Budget Constraint) Predicted Expenditure Profile by Treatment Type

Scenario 4 – Performance Target

7.24 Predicted annual expenditure profile for the whole carriageway network by Treatment Type under Scenario 4 (Performance Target) is shown in Figure 7.7.

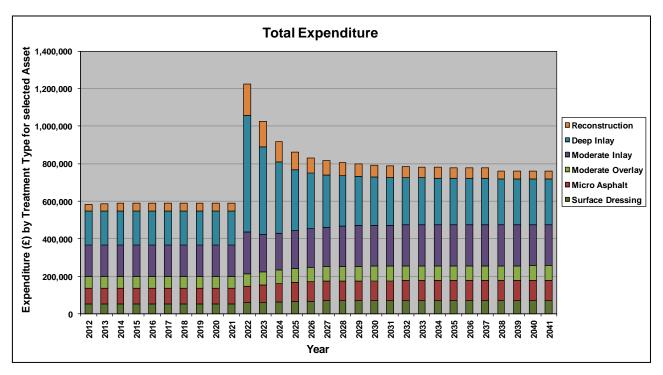


Figure 7.7: Scenario 4 (Performance Target) Predicted Expenditure Profile by Treatment Type

Comparison by Scenario

7.25 A comparison of the predicted proportions of the carriageway network in Very Poor and Poor conditions for the four Analysis Scenarios is illustrated in Figure 7.8. This output was manually prepared by exporting the '12 – Exp by Condition Band' worksheet for each Analysis Scenario into a spreadsheet and then using the spreadsheet to generate the analysis scenario graph.

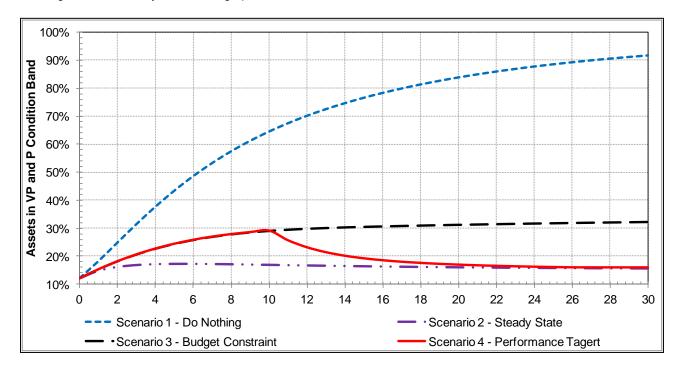
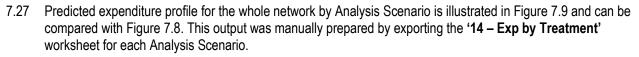



Figure 7.8: Asset Proportions in Very Poor and Poor Condition by Analysis Scenario

- 7.26 From Figure 7.8, it can be seen that:
 - In Scenario 1 Do Nothing the percentage of assets in poor and very poor condition increases rapidly
 during the ten years, then at a slower rate thereafter until the end of the 30 year period modelled, by which
 point approximately 92% of assets are in poor condition.
 - In Scenario 2 Steady State the percentage of assets in poor and very poor condition remains at approximately 13% as the overall condition of assets on the network is maintained at the same level, indicating that the budget is sufficient to maintain assets in their current condition.
 - In Scenario 3 Budget Constraint the percentage of assets in poor and very poor condition increases slowly during the first twenty years when approximately 32% of assets have deteriorated to either a poor or very poor condition. After this, the percentage of assets in poor or very poor condition remains consistent until the end of the thirty year period modelled, indicating that the budget allocated is sufficient to prevent the remaining assets that have not entered a poor or very poor condition from doing so.
 - In Scenario 4 Performance Target the percentage of assets in poor or very poor condition increases at the same rate as in scenario 3 during the first ten years, at which point the performance target strategy is adopted which reduces the number of assets in poor or very poor condition back down to the same level as there were initially, at around 13%. This indicates that the budget allocated from Year 10 onwards is sufficient to firstly, reduce the number of assets in poor or very poor condition to initial levels and that secondly, the budget is sufficient to maintain assets in the same condition until the end of the analysis period.

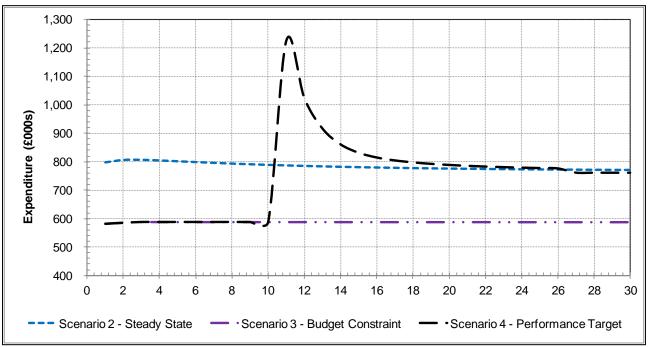


Figure 7.9: Summary of Expenditure Profile by Analysis Scenario

- 7.28 From Figure 7.9 it can be seen that:
 - In Scenario 1 Do Nothing there is no profile on the graph as there is no spending.
 - In Scenario 2 Steady State the expenditure remains consistent in order to maintain the assets in the same condition across the network.
 - In Scenario 3 Budget Constraint the expenditure remains at 20% less than for the Steady State Condition.
 - In Scenario 4 Performance Target the expenditure profile matches that of Scenario 3 during the first ten years, after which point the performance target strategy is adopted and the expenditure increases until the assets on the network have been returned to their initial condition. At this point, the expenditure profile stabilises at the level required to maintain those assets in the same condition.
- 7.29 Note that when the results are reviewed, the user may wish to run the Toolkit again with recorded changes in the input data (e.g. treatment or budgets) to explore the impact on performance and expenditure. These results can be used not only to support asset managers in decision making, but also build the case for funding and report to senior stakeholders in the local highway authority.

8 WORKED EXAMPLE FOR THE ANCILLARY ASSETS TOOLKIT

INTRODUCTION

- 8.1 This example illustrates the application of the Ancillary Lifecycle Planning Toolkit. In this example, Homogeneous Asset Groups are used for the purposes of illustration only.
- 8.2 The examples aim to demonstrate the application of the Toolkit in investigating:
 - The required levels of funding for user-defined ancillary assets performance using the Performance Target option.
 - The effect of constraints on budgets available for ancillary assets replacement on long-term performance trends.
- 8.3 An Analysis Period of 20 years was used, with the start year of analysis set to 2012.

Inventory, Condition and estimated Asset Service Life

- 8.4 The Inventory data used was from a region in Scotland where the performance of 626 traffic signs (Matrix and VMS) was modelled. One Homogeneous Asset Group for all 626 assets was created. No region-specific inventory data was used for the Lighting Columns Homogeneous Asset Group, which is provided for the purposes of illustration only.
- 8.5 The current condition of assets in the Homogeneous Asset Groups was represented as a distribution across five Condition Bands as illustrated in Table 8.1. This provides the base year or starting point for network planning in subsequent years.
- 8.6 For this example, the Estimated Asset Service Life for the Homogenous Asset Group was used and is provided in Table 8.1. Asset Service Life is defined as the average time (in years) it takes the asset to deteriorate from an as new or very good condition stated to a critical or very poor condition state. The Asset Service Life assumption (based on expert engineering opinion) is used in this example to estimate the TPM for each Homogeneous Asset Group. In practice, it is more desirable to derive TPMs from observed data. Guidance on deriving Deterioration Models from observed data is provided in Appendix A.

Table 8.1: Asset Inventory, Condition and Service Life

Description	Inventory	Current Condition (% in Condition Band)					Asset Service Life	
	Quantity	VG	G	F	Р	VP	Assumptions (Years)	
Traffic Signs – Matrix and VMS	626	78%	14%	6%	1%	1%	12	
Lighting Columns	569	69%	19%	9%	3%	1%	30	

8.7 Notes:

• VG =	Very Good
--------	-----------

- G = Good
- F = Fair
- P = Poor
- VP = Very Poor

Treatment Types, Effects and Unit Costs

8.8 In this example, the only Treatment Type used is Asset Replacement. The effect of this Treatment is to upgrade all assets (regardless of their condition state) to a very good (VG) condition. This is illustrated in Table 8.2 below. The unit cost for this treatment is given in Table 8.2.

	Unit Costs (£/unit)	Condition Band Treated				
Treatment Details		VG	G	F	Р	VP
		Effects after Treatment				
Asset Replacement (Matrix and VMS Signs)	10,000	VG	VG	VG	VG	VG
Asset Replacement (Lighting Columns)	1,500	VG	VG	VG	VG	VG

Table 8.2: Treatment Type, Unit Costs and Effects

Analysis Scenarios

8.9 Maintenance scenarios investigated in this example are summarised in Table 8.3.

Table 8.3: Analysis Scenarios

Scenario Name	Description
Scenario 1: Replace on Fail	This Analysis Scenario is aimed at investigating the required funding level necessary to replace all assets in Very Poor (VP) condition every year.
Scenario 2: Budget Constraint	This Analysis Scenario is aimed at investigating the implication of user- defined Budget Constraints on the performance of the ancillary assets over 20 years.

APPROACH

8.10 To use the Toolkit for the analysis described in this example, the steps described in Table 8.4 may be followed. The **'Reference'** column refers to sections in this guidance document in which the steps are first described, whereas the table and figure numbers referred to in the **'Description'** column relate specifically to the worked example.

Steps	Descriptio	Reference	
STEP 1 Model Setup	 Setup the Toolkit by specifying the following in Analysis Start Year: Analysis Period: Number of Condition Bands: Short code for Condition Band: Number of Homogeneous Asset Groups: Name of Homogeneous Asset Group: Number of Treatments: Treatment Name: 	 the 'Input Sheet' worksheet: (2012) (20) (5) (VG, G, F, P, VP) (2) (Traffic Signs – Matrix and VMS, Lighting Columns) (1) (Asset Replacement) 	Section 4
STEP 2 Inventory and Condition Data	Specify the inventory and condition data giver Groups' worksheet.	Section 4	
STEP 3 Transition Matrices	Specify Transition Probability Matrices for both opening the ' Transition Matrices ' worksheet naming the matrix to be assigned to the Traffie Homogenous Asset Group (e.g. TS_M&V). Click on the ' View / Edit Matrix ' button in the appropriate asset life in years (e.g. 12) into the Signs – Matrix and VMS Homogenous Asset (Matrix from Asset Life ' to generate the appro- Click the ' Save & Exit ' button and then repea Columns Homogenous Asset Group, only this life of 30 years.	Section 4	
STEP 4 Treatment Effects and Unit Costs	Specify Treatments Effects and unit costs given in Table 8.2 in the ' Treatment Effects & Costs ' worksheet for both Asset Groups.		Section 4
STEP 5 Treatment Strategy	In the 'Treatment Strategies' worksheet, specify the Treatment Strategy based on Analysis Scenarios (Table 8.3). There is only one Treatment Strategy used in this example - see Figure C1 in Appendix C.		Section 4

Table 8.4: Steps for Implementing the Worked Example

User Guidance for Lifecycle Planning Toolkit

Steps	Description	Reference
STEP 6 Scenario 1: Replace on Fail	 In the 'Scenario' worksheet (see Figure C2 in Appendix C): Select the Transition Matrix for each Homogenous Asset Group for each year from the dropdown menu. Select 'Replace on Fail' as the Treatment Strategy for each year from the dropdown menu. Delete all data from the 'Budget Constraint' or 'Performance Target' rows if present. Run the analysis to derive outputs for the Replace on Fail scenario. The results are discussed below. Export the outputs and/or save a new version of the model. 	Section 5
STEP 7 Scenario 2: Budget	In the ' Budgets' worksheet, specify the annual average expenditure for asset replacement under Scenario 2 (Budget Constraint) as shown in Figure C3 in Appendix C.	Section 4
STEP 8 Scenario 2: Budget	In the 'Scenario' worksheet, assign the Budget Constraint for each year (See Figure C4 in Appendix C). Run the analysis to derive outputs for the Budget Constraint scenario. The results are discussed below. Export the outputs and/or save a new version of the model.	Section 5

OUTPUTS – TRAFFIC SIGNS

- 8.11 The paragraphs that follow summarise the outputs of the analysis under the following headings:
 - Predicted condition profile.
 - Predicted expenditure.
 - Predicted work quantity.

Predicted Condition Profile

8.12 The predicted condition profile for each Analysis Scenario can be found in the '9 - Condition Graph' worksheet of the Toolkit.

Scenario 1 – Replace on Fail

8.13 The average predicted condition profile for traffic signs under Scenario 1 is shown in Figure 8.1. Since the Treatment Strategy was to replace all Very Poor (VP) assets each year, the %Distribution of Very Poor assets are null every year.

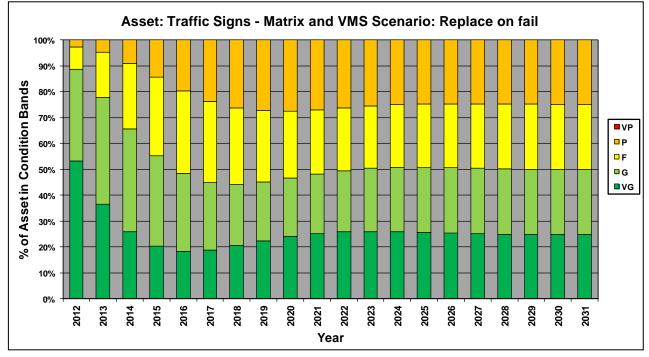


Figure 8.1: Scenario 1 (Replace on Fail) Predicted Condition Profile

Scenario 2 – Budget Constraint

8.14 The average predicted condition profile for traffic signs under Scenario 2 (Budget Constraint) is shown in Figure 8.2.

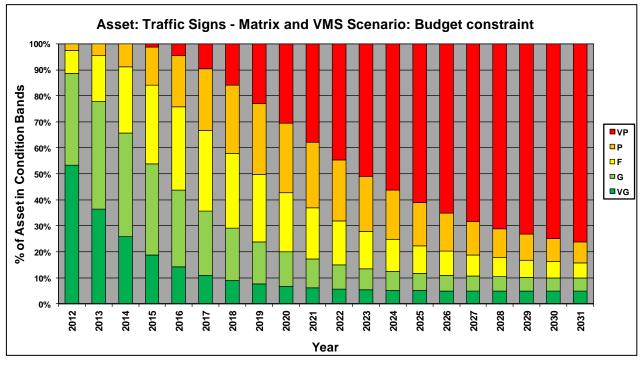


Figure 8.2: Scenario 2 (Budget Constraint) Predicted Condition Profile

- 8.15 From Figure 8.2 it may be observed that:
 - The percentage of assets in Very Poor (VP) condition is null in years 2012, 2013 and 2014, which implies that it was possible to eliminate the population of Very Poor assets in these years whilst staying within the Budget Constraints.
 - From 2015 onwards, the percentage of assets in Very Poor (VP) condition increases dramatically, which implies that the budget for these years was too low to eliminate the population of Very Poor assets.

Predicted Expenditure

8.16 Predicted annual expenditure profiles for each Analysis Scenario can be found in the '**15 – Exp by Treatment Graph'** worksheet.

Scenario 1 - 'Replace on Fail' scenario

8.17 The predicted annual expenditure profile for traffic signs under Scenario 1 (Replace on Fail) is shown in Figure 8.3 below.

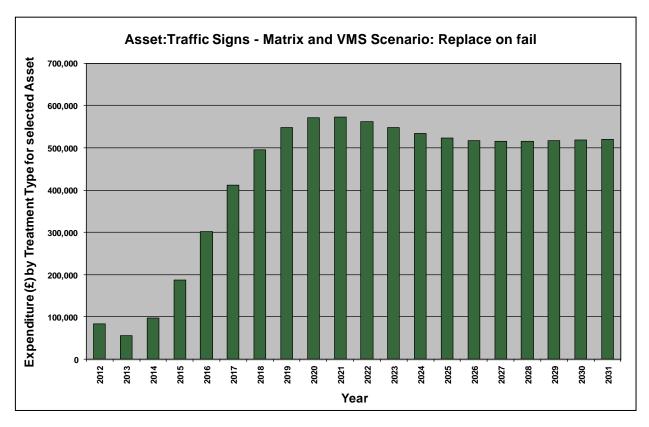


Figure 8.3: Scenario 1 (Replace on Fail) Predicted Expenditure Profile

Scenario 2 – Budget Constraint

8.18 The predicted annual expenditure profile for traffic signs under Scenario 2 (Budget Constraint) is shown in Figure 8.4 below.

- 8.19 From Figure 8.4 it may be observed that:
 - The population of Very Poor (VP) assets in 2012, 2013 and 2014 could be reduced to zero at a cost below the annual Budget Constraint of £100,000.
 - From 2015 onwards, the entire annual budget was spent.

Work Quantity

8.20 Predicted work quantities profile for traffic signs under each Analysis Scenario can be found in the '**11 – Work Qty Graph**' worksheet.

Scenario 1 - 'Replace on Fail' scenario

8.21 The predicted work quantities profile for traffic signs under Scenario 1 (Replace on Fail) is shown in Figure 8.5 below.

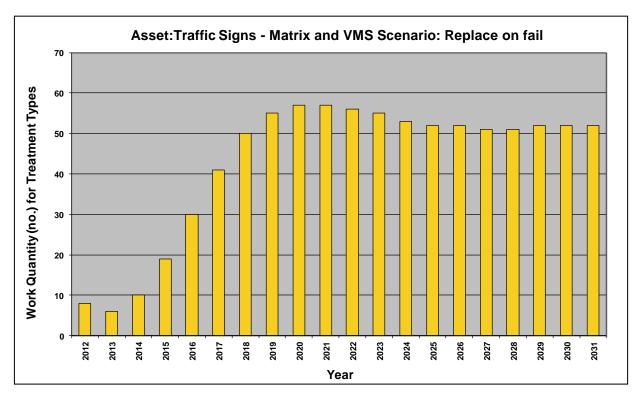


Figure 8.5: Scenario 1 (Replace on Fail) Predicted Work Quantities

Scenario 2 – 'Budget Constraint' scenario

8.22 The predicted work quantities profile for traffic signs under Scenario 2 (Budget Constraint) is shown in Figure 8.6 below.

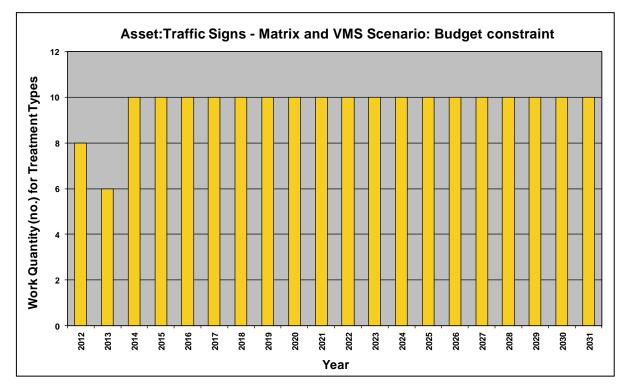


Figure 8.6: Scenario 2 (Budget Constraint) Predicted Work Quantities

OUTPUTS – LIGHTING COLUMNS

Predicted Condition Profile

Scenario 1 – Replace on Fail

8.23 The average predicted condition profile for lighting columns under Scenario 1 is shown in Figure 8.7. Since the Treatment Strategy was to replace all Very Poor (VP) assets each year, the %Distribution of Very Poor assets are null every year.

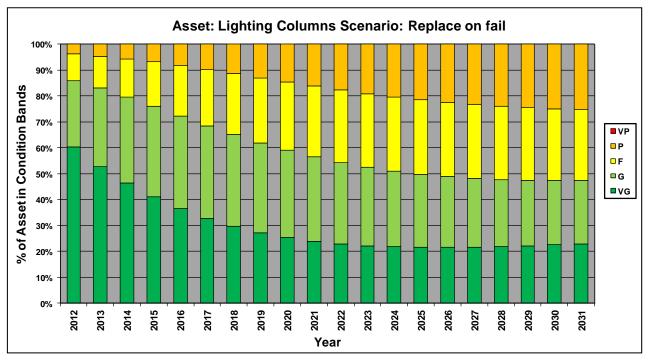
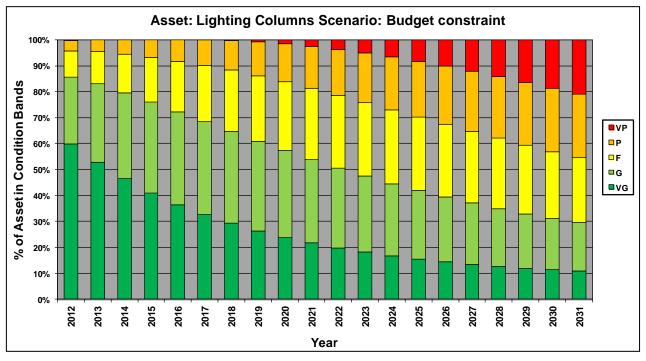



Figure 8.7: Scenario 1 (Replace on Fail) Predicted Condition Profile

Scenario 2 – Budget Constraint

8.24 The average predicted condition profile for lighting columns under Scenario 2 (Budget Constraint) is shown in Figure 8.8.

Figure 8.8: Scenario 2 (Budget Constraint) Predicted Condition Profile

- 8.25 From Figure 8.8 it may be observed that:
 - The percentage of assets in Very Poor (VP) condition only begins to increase from 2018, which implies that it
 was possible to eliminate the population of Very Poor assets prior to this whilst staying within the Budget
 Constraints.
 - From 2018 onwards, the percentage of assets in Very Poor (VP) condition increases, which implies that the budget for these years was too low to eliminate the population of Very Poor assets.

Predicted Expenditure

8.26 Predicted annual expenditure profiles for each Analysis Scenario can be found in the **'15 – Exp by Treatment Graph'** worksheet.

Scenario 1 - 'Replace on Fail' scenario

8.27 The predicted annual expenditure profile for lighting columns under Scenario 1 (Replace on Fail) is shown in Figure 8.9 below.

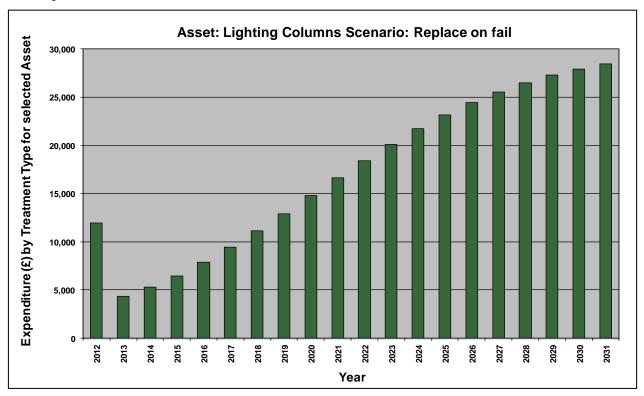


Figure 8.9: Scenario 1 (Replace on Fail) Predicted Expenditure Profile

Scenario 2 – Budget Constraint

^{8.28} The predicted annual expenditure profile for lighting columns under Scenario 2 (Budget Constraint) is shown in Figure 8.10 below.

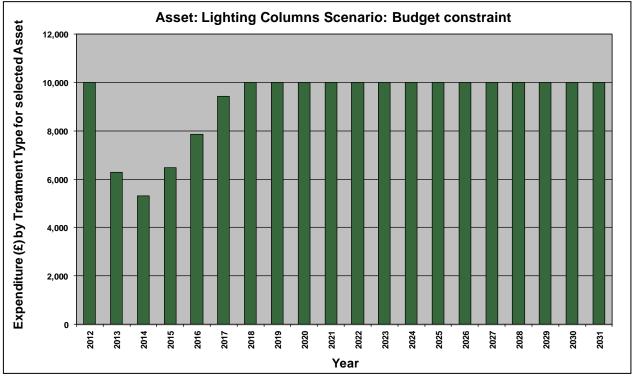


Figure 8.10: Scenario 2 (Budget Constraint) Predicted Expenditure Profile

- 8.29 From Figure 8.10 it may be observed that:
 - The population of Very Poor (VP) assets from 2013 to 2017 could be reduced to zero at a cost below the annual Budget Constraint of £10,000.
 - From 2018 onwards, the entire annual budget was spent.

Work Quantity

8.30 Predicted work quantities profile for lighting columns under each Analysis Scenario can be found in the '11 – Work Qty Graph' worksheet.

Scenario 1 - 'Replace on Fail' scenario

8.31 The predicted work quantities profile for lighting columns under Scenario 1 (Replace on Fail) is shown in Figure 8.11 below.

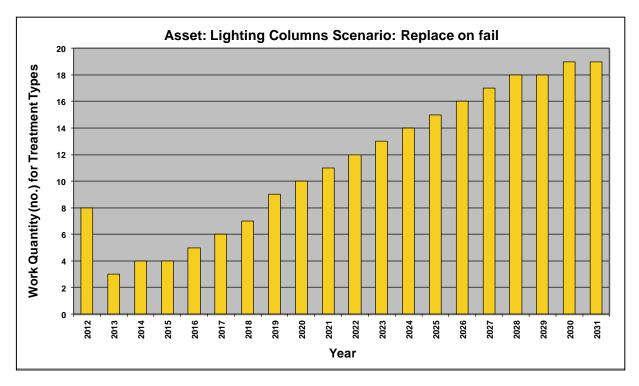


Figure 8.11: Scenario 1 (Replace on Fail) Predicted Work Quantities

Scenario 2 – 'Budget Constraint' scenario

8.32 The predicted work quantities profile for lighting columns under Scenario 2 (Budget Constraint) is shown in Figure 8.12 below.

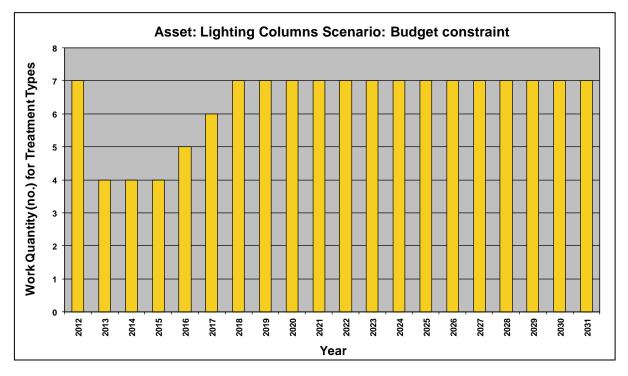


Figure 8.12: Scenario 2 (Budget Constraint) Predicted Work Quantities

9 WORKED EXAMPLE FOR THE FOOTWAY TOOLKIT

INTRODUCTION

- 9.1 This example illustrates the application of the Lifecycle Planning Toolkit using Footway inventory and condition data from a local highway authority in England. The example is aims to demonstrate the application of the Toolkit in investigating:
 - The required levels of funding for user-defined Footway network performance standards.
 - The effect of Treatment on the Homogeneous Asset Groups over the period of the analysis.
- 9.2 An Analysis Period of 30 years was used, with the start year of analysis set to 2012.

Inventory, Condition and Deterioration Models

- 9.3 The inventory data used in this example was from an urban network with a total length of 722km of footways. The lengths and widths of the Footway network were aggregated into two Homogeneous Asset Groups based on the Footway surface (Flags, Bituminous) as illustrated in Table 9.1. Each Homogeneous Asset Group is modelled in isolation.
- 9.4 The current condition of assets in each Homogeneous Asset Group is represented as a distribution across five Condition Bands as illustrated in Table 9.1. This is the base year or starting point for network planning in subsequent years. Consequently, the estimate of the condition is important, as are the definitions of the Condition Bands which are used to describe them.
- 9.5 For this example, Deterioration Models for each Homogenous Asset Group are provided in Figure 9.1 in the format given in Section 4. These models are used for the purpose of illustration only.

Class	Inven	tory			Current Condition (% in Condition Band)				
	Length (m)	Width (m)	VG	G	F	Р	VP		
Flags	164,000	2.90	54%	27%	10%	9%	0%		
Bituminous	558,000	2.90	45%	28%	16%	11%	0%		

Table 9.1: Asset Inventory and Condition

9.6 Notes:

0	VG	=	Very Good
0	G	=	Good
0	F	=	Fair
0	Ρ	=	Poor
0	VP	=	Very Poor

	0.95	0.05	0	0	0	[0.	.98	0.02	0	0	0]
	0	0.95	0.05	0	0		0	0.98	0.02	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
$P_{Flags} =$	0	0	0.95	0.05	0	$P_{Bituminous} =$	0	0	0.98	0.02	0
	0	0	0	0.95	0.05		0	0	0	0.98	0.02
	0	0	0	0	1		0	0	0	0	1
	0	0	0	0	1		0	0	0	0	1

Figure 9.1: Deterioration Models for each Asset Group

Treatment Types, Effects and Unit Costs

9.7 In this example, the Treatment Types in Table 9.2 are used:

 Table 9.2: Treatment Types

Treatment	Material	Description
Lift and Re-Lay	Flags	Lift and re-lay plus 5% replacement – with re-pointing where needed
Replacement [Bituminous]	Bituminous	Replace/reconstruct (recycling) – 75/25 plus foundation using HRA and/or a dense wearing course

- 9.8 The effects of the above Treatments in terms of the change in condition (e.g. from Very Poor to Very Good) following maintenance intervention are illustrated in Table 9.3. In practice, the effects of Treatments can be determined from records of past treatments on the road network.
- 9.9 The After-treatment Asset Groups are also specified in Table 9.3. The first Treatment (**'Lift and Re-Lay'**) has no impact on Homogeneous Asset Groups because this treatment applies to 'Flags' only and assets still belong to the Flags group after Treatment. On the other hand, with the second Treatment (**'Replacement [Bituminous]**'), the Flags assets are replaced with Bituminous assets i.e. they are transferred to the Bituminous Homogeneous Asset Group after Treatment. This also means that the areas covered by each asset group will change over the period of analysis. This aspect is covered in Section 2. Unit costs of Treatments used in this example are also shown in Table 9.3.

Table 9.3: Treatment Effects & Unit Costs

		Unit	Condition Band Treated				
Treatment Details	After Treatment Asset Group	Costs (£/m²)	VG	G	F	Р	VP
			Effects after Treatment				
Lift and Re-Lay	No change	18.51	VG	VG	G	G	F
Replacement [Bituminous]	Bituminous	19.82	VG	VG	VG	VG	VG

Analysis Scenarios

9.10 Maintenance scenarios investigated in this example are summarised in Table 9.4.

Table 9.4: Analysis Scenarios

Scenario Name	Description
Scenario 1: Do Nothing	This Analysis Scenario is aimed at investigating the consequences of not carrying out maintenance interventions.
Scenario 2: Eliminate Poor and Very Poor Assets by Year 5 and keep all assets between Fair and Very Good conditions thereafter	This Analysis Scenario is aimed at determining the required funding level necessary to eliminate proportions of the asset in poor and very poor condition over the first five years and thereafter to keep the asset in fair to very good condition.

APPROACH

9.11 To implement this example in the Toolkit, the steps described in Table 9.5 may be followed. The '**Reference**' column refers to sections in this guidance document in which the steps were first described, whereas the table and figure numbers referred to in the '**Description**' column relate specifically to the worked example.

Steps	Descriptio		Reference
Steps			Reference
STEP 1 Model Setup	 Setup the Toolkit by specifying the following in Analysis Start Year: Analysis Period: Number of Condition Bands: Short code for Condition Band: Number of Homogeneous Asset Groups: Name of Homogeneous Asset Group: Number of Treatments: Treatment Name: 	(2012) (30) (5) (VG, G, F, P, VP) (2) (Flags, Bituminous) (2) (Lift and Re-lay, Replacement [Bituminous])	Section 4
STEP 2 Inventory and Condition Data	Specify inventory and condition data (Table 9 worksheet.	.1) in the 'Homog Asset Groups'	Section 4
STEP 3 Transition Matrices	Specify the Transition Probability Matrices fro Matrices' worksheet by clicking on the ' View Homogenous Asset Group.	Section 4	
STEP 4 Treatment Effects and Unit Costs	Specify Treatment Effects and unit costs (Tab & Costs' worksheet. Note that once the data match the appearance of Figure 4.12 and Fig	Section 4	
STEP 5 Treatment Strategy	In the ' Treatment Strategies ' worksheet, spe Strategy based on Analysis Scenarios (Table The Treatment Strategies used in this examp Appendix D.	Section 4	
STEP 6 Scenario 1: Do Nothing	 In the 'Scenario' worksheet (See Figure D2 is Group for each year of analysis from - Select the Treatment Strategy 'Do N from the dropdown menu. The inputs for Budget Constraints ar left blank to simulate a 'Do Nothing' Run analysis to derive outputs for the 'Do No and/or save a new version of the model. The 	rix for each Homogeneous Asset the dropdown menu. Jothing' for each year of analysis ad Performance Targets should be strategy. thing' scenario. Export the outputs	Section 5

Table 9.5: Steps for Implementing the Worked Example

Steps	Description	Reference
STEP 7 Scenario 2: Eliminate VP&P by Year 5 and keep all assets between Fair and Very Good conditions thereafter	In the ' Scenario' worksheet assign Treatment Strategy to each Homogeneous Asset Group and year (See Figure D3 in Appendix D). Run the Toolkit. Export the outputs and/or save a new version of the model.	Section 5

OUTPUTS

9.12 The following paragraphs summarise the outputs of the analysis under the following headings:

- Predicted condition profile.
- Predicted expenditure.
- Predicted areas for Homogeneous Asset Groups.

Predicted condition profile

9.13 The predicted condition profile for each Homogeneous Asset Group and each Analysis Scenario can be found in the **'9 - Condition Graph'** worksheet of the Toolkit. For each Analysis Scenario and asset group, the graphs obtained are as follows:

Scenario 1 – Do Nothing

9.14 The average predicted condition profiles for the Footway network when no Treatments are applied throughout the Analysis Period (Scenario 1: Do Nothing) are shown in Figure 9.2 and Figure 9.3.

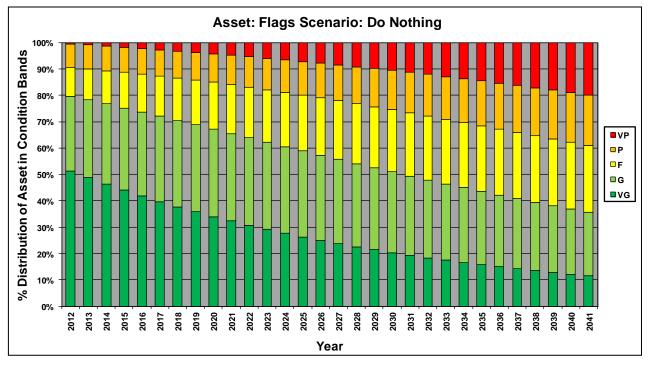


Figure 9.2: Scenario 1 (Do Nothing) Predicted Condition Profile for 'Flags' Asset Group

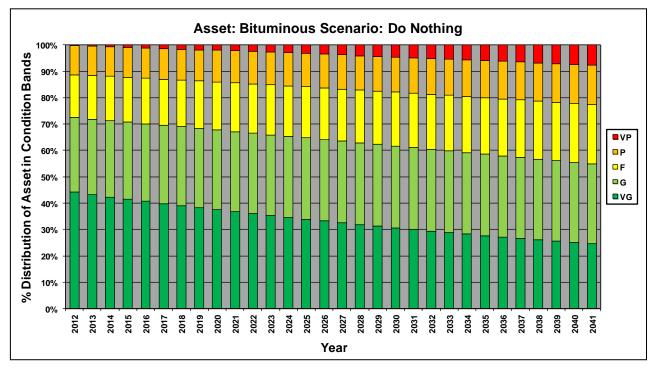


Figure 9.3: Scenario 1 (Do Nothing) Predicted Condition Profile for 'Bituminous' Asset Group

Scenario 2 – Eliminate VP&P by Year 5 and keep all assets between Fair and Very Good conditions thereafter

9.15 The average predicted condition profiles for the Footway network under Scenario 2 are illustrated in Figure 9.4 and Figure 9.5, from which it can be observed that the population of Very Poor and Poor assets is eliminated within 5 years and maintained null thereafter, as specified in Table 9.4.

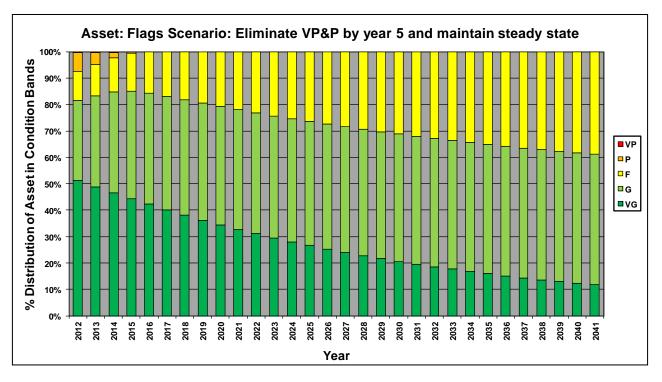


Figure 9.4: Scenario 2 Predicted Condition Profile for 'Flags' Asset Group

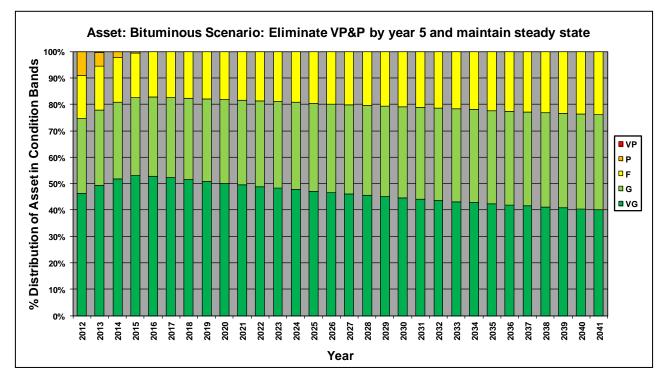


Figure 9.5: Scenario 2 Predicted Condition Profile for 'Bituminous' Asset Group

Predicted Expenditure

9.16 Predicted annual expenditure profile for the Footway network by Treatment Type for each Analysis Scenario can be found in the **'15 – Exp by Treat Graph'** worksheet. Results for Scenario 2 are shown below.

Scenario 2 - Eliminate VP&P by Year 5 and maintain steady state

9.17 The predicted annual expenditure profile for the Footway network by Treatment Type for Scenario 2 is illustrated in Figure 9.6.

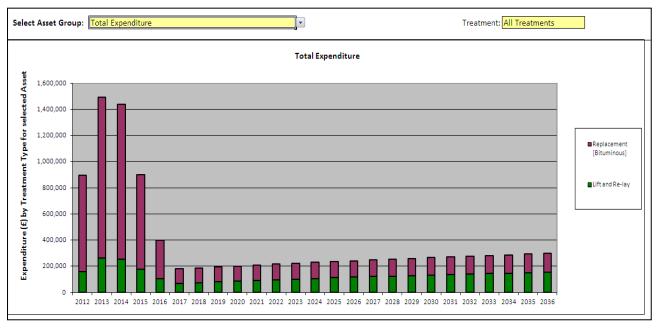
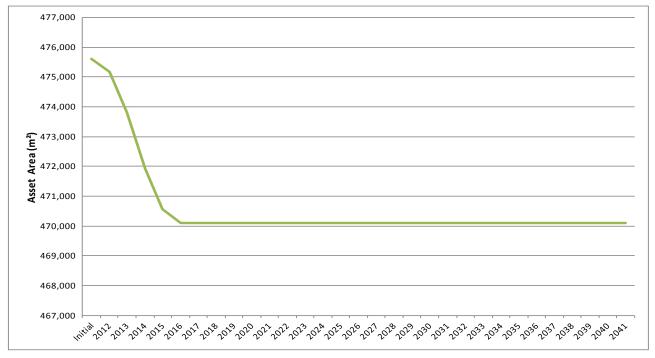
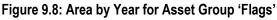
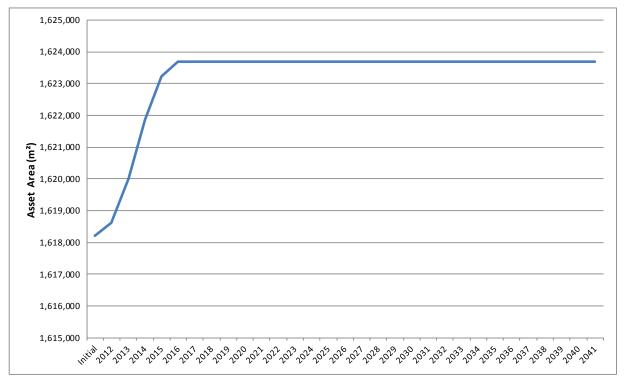


Figure 9.6: Scenario 2 Predicted Expenditure Profile by Treatment Type

Predicted areas for Homogeneous Asset Groups


- 9.18 As mentioned in Section 1, the areas covered by each asset group are changing over the period of analysis. This is due to the fact that the Treatment '**Replacement [Bituminous]**' moves the Flags assets to the Bituminous asset group.
- 9.19 The areas covered by each asset group over the Analysis Period are shown in Figure 9.7. This output can be found in the **'16 Area by Year'** worksheet of the Toolkit.


AREA BY YEAR										î 🔒
Asset Group	No.	Cond	Distribution (m ²) 2012	2012	2013	2014	2015	2016	2017	2018
	1	VG	256,824	243,983	231,784	220,194	209,185	198,726	188,789	179.350
	2	G	128,412	143,441	162,585	179,800	191,250	197,758	201,487	204,844
Flags S1	3	F	47,560	51,603	56,195	61,514	67,428	73,619	79,826	85,909
	4	Р	42,804	34,433	21,175	9,170	2,358	0	0	0
	5	VP	0	1,712	2,060	1,248	341	0	0	0
	1	VG	728,190	750,690	797,770	841,535	861,252	858,775	847,175	835,890
	2	G	453,096	458,598	464,440	471,106	478,515	486,170	493,622	500,693
Bituminous S1	3	F	258,912	262,796	266,712	270,666	274,675	278,752	282,900	287,115
	4	Р	178,002	143,696	87,647	36,491	8,235	0	0	0
	5	VP	0	2,848	3,433	2,074	561	0	0	0


Figure 9.7: Asset Group Area by year under Scenario 2

9.20 In addition, the graphs shown in Figure 9.8 and Figure 9.9 were produced manually (using the Export function of the Toolkit) to illustrate the changes in areas over the period of analysis. The area covered by the Flags asset group decreases over the years whilst the area covered by the Bituminous asset group increases by the same amount; this is due to the fact that some footways constructed of flags were reconstructed as bituminous footways as part of the Treatment Strategy.

10 ACKNOWLEDGEMENTS

The Lifecycle Planning Toolkit and Default Carriageway Deterioration Model have been developed under the Highways Maintenance Efficiency Programme. The help and support of the Working Group, Project Team and contributors is acknowledged.

HMEP ASSET MANAGEMENT WORKING GROUP

Chair - Matthew Lugg OBE (Director of Environment and Transport for Leicestershire CC and Former President of ADEPT)

DfT - Haydn Davies	UK Lighting Board - Peter Hosking
DfT - Steve Berry	UK Bridges Board / TAG - David Yeoell
HAMFIG - Chris Allen-Smith	UKRLG AM Group - Andy Stevenson
Highways Agency - Clare Griffin	UKRLG AM Group - Garry Sterritt
Highways Agency - Richard Arrowsmith	UKRLG AM Group - Paul Boss
HMEP - Gary Thompson	UKRLG AM Group - Lester Wilmington
HTMA - Dennis Parkinson	UKRLG AM Group - Phil Moore

ATKINS PROJECT TEAM

Dr. Michael Anyala	Dr. Ro Cartwright
Alan Taggart	Prof. Martin Snaith
Lila Tachtsi	John Paterson

ATKINS SUPPORT TEAM

Dr. Sumyaty Juspi Nick Worrall

Dr. Eric Stannard

OTHER CONTRIBUTORS

Cornwall County Council Coventry City Council Hertfordshire County Council London Borough of Redbridge Peterborough City Council

Andy McLoughlin
Sheffield City Council
Transport for London
University of Birmingham Highways Group
Worcestershire County Council

Oriana Miotti

11 REFERENCES

Derivation of Transition Probability Matrices for Pavement Deterioration Modelling, Journal of Transportation Engineering ASCE, February 2006

Hierarchical asphalt pavement deterioration model for climate impact studies, International Journal of Pavement Engineering, M. Anyala, J.B. Odoki and C.J. Baker, May 2012

Technical Note 46 - Part 1 - Financial Information to support Asset Management (Carriageways), PCIS Support Contract, July 2011

12 GLOSSARY

After-Treatment Asset Group	User defined input used to model the change of Homogeneous Asset Group following a Treatment (see Section 4).
Analysis Period	User specified duration (in years) of the lifecycle analysis (see Section 4).
Analysis Scenario	A combination of the following input attributes that should be selected by the user for each homogeneous asset group before running an analysis: transition probability matrix (deterioration model), treatment strategy, performance target, and budget constraints (see Section 5).
Ancillary Asset Toolkit	The version of the Lifecycle Planning Toolkit (also referred to in this document as 'Ancillary Highway Asset Lifecycle Planning Toolkit') used for strategic level lifecycle modelling of highway assets such as: road signs, bollards, vehicle restraint systems, street lighting, traffic signals, road markings and kerbs.
Asset Service Life	The average time (in years) it takes an asset to move from the best (as new) condition band or state to the worst condition band or state.
Budget Constraint	Annual budget figure, which can be user-defined for each Treatment Type (see Section 4). Budget Constraints are assigned to Homogeneous Asset Groups from the Scenarios worksheet (see Section 5).
Carriageway Toolkit	The version of the Lifecycle Planning Toolkit (also referred to in this document as 'Carriageway Lifecycle Planning Toolkit') used for strategic level lifecycle modelling of road carriageways.
Condition Band	Used to categorise the condition of assets that are being modelled. Condition bands would normally range from an excellent state (e.g. Very Good) to a critical state or failed state (e.g. Very Poor). See Table 2.1 and Section 4.
Deterioration Model	Is defined in the Toolkit in terms of Transition Probability Matrices (TPMs). A TPM embodies the proportion of asset that will remain in a given condition band and the proportion that would move to a worst condition state after one deterioration cycle.
Footway Toolkit	The version of the Lifecycle Planning Toolkit (also referred to in this document as 'Footway Lifecycle Planning Toolkit') used for strategic level lifecycle modelling of footways and dedicated cycle ways.
Homogeneous Asset Group	A grouping of assets which are similar in terms of deterioration related criteria. See Table 2.1 and Section 4.
Performance Target	Annual condition target specified by the user and assigned to homogeneous asset groups (see Sections 4 and 5).
Transition Probability Matrix	A Transition Probability Matrix embodies all information necessary to model the annual deterioration of a particular homogeneous asset group (see Section 4).
Treatment Effect	The effects (change in asset condition or homogeneous asset group) of applying a specific treatment to particular asset group as specified by the user (see Section 4).
Treatment Strategy	A Treatment Strategy comprises the following user defined attributes: a ranked list of Treatment Types, the condition band to which each Treatment Type is applicable, and the maximum percentage of assets that can be treated (see Section 4). Treatment Strategies are assigned annually to Homogeneous Asset Groups (see Section 6).

APPENDIX A – DEFAULT CARRIAGEWAY DETERIORATION MODELS

INTRODUCTION

This appendix describes generic default carriageway deterioration models for local highway road networks. The default deterioration models presented in this appendix are intended as a starting point for local highway authorities who may not immediately have deterioration models that would allow them to develop sensible lifecycle plans immediately or do not have data appropriate for developing such deterioration models. Local highway authorities may adjust (calibrate) these default models so that predictions from the Lifecycle Planning Toolkit closely match recent local observed trends. The default models may also be used to benchmark existing models.

The default carriageway deterioration models presented in this appendix are compatible with the carriageway Lifecycle Planning Toolkit described in this document. The deterioration models, in conjunction with the Lifecycle Planning Toolkit, will support local highway authorities to implement an approach based on asset management principles that deliver demonstrable efficiencies. The principal uses of deterioration models are to predict how asset condition will change over time and, in conjunction with treatment options, to allow practitioners to determine the most cost-effective timing of treatments.

The appendix is structured under the following headings:

- **Transition Probability Matrix**: introduces the concept of the deterioration modelling embodied in the Lifecycle Planning Toolkit.
- **Condition Bands for Carriageways:** provides the definition of five carriageway condition states used in developing the default deterioration models.
- **Homogeneous Carriageway Asset Groups:** describes ten homogeneous carriageway groups. Deterioration models were developed for each of these homogeneous groups.
- Default Carriageway Deterioration Models: provides a set of default carriageway deterioration models derived from SCANNER (Surface Condition Assessment for the National NEtwork of Roads) data and another set of models derived from CVI (Coarse Visual Inspection) data.
- **Developing TPMs from Data**: describes a standard approach which may be used by local highway authorities to develop models that reflect local observed deterioration trends.

TRANSITION PROBABILITY MATRIX

The Lifecycle Planning Toolkit makes use of Transition Probability Matrices (TPMs) to model the deterioration of each Homogeneous Asset Group annually. The general form of the matrix denoted by P is given by:

$$P = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2n} \\ \vdots & & & \vdots \\ p_{n1} & p_{n2} & \dots & p_{nn} \end{bmatrix} (A1)$$

This matrix contains all the information necessary to model the deterioration of the Homogeneous Group. The transition probabilities, p_{ij} , indicate the probability of the portion of the asset group in condition *i* moving to condition *j* in one year due to the damaging effects of traffic, environment and/or other factors, as applicable.

For every TPM, the sum of the entries in each row is equal to one and all entries are non-negative. Two more conditions apply to the process when used to simulate asset deterioration. Firstly $p_{ij} = 0$ for i > j, signifying the general belief that assets cannot improve in condition without first receiving some form of treatment; the bottom half of the matrix, as shown in equation (A2). Secondly $p_{nn} = 1$, signifying a holding state whereby assets that have reached their worst condition cannot deteriorate further. Consequently, the general form of the transition matrix *P* implemented in the Toolkit is denoted by:

$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} & \dots & p_{1n} \\ 0 & p_{22} & p_{23} & \dots & p_{2n} \\ 0 & 0 & p_{33} & \dots & p_{3n} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{bmatrix}_{(A2)}$$

The Lifecycle Planning Toolkit allows for users to define deterioration models by specifying the elements (p_{ij}) of the TPM. Default carriageway deterioration models for each Homogeneous Group are given below. A standard approach for developing TPMs from data is also described later in this appendix.

CONDITION BANDS FOR CARRIAGEWAYS

The Carriageway Condition Index (CCI) is a measure of road pavement performance and can be calculated from SCANNER, CVI or DVI (Detailed Visual Inspection) data. Only SCANNER and CVI data were used in developing the default carriageway deterioration models. Guidance on the calculation of CCI from SCANNER and CVI carriageway defects is provided in UKPMS Technical Note 46 – Part 1 (www.pcis.org.uk/index.php?p=6/8/0/list,0,62).

Table D1 describes five CCI based condition bands used to develop the default carriageway deterioration models. The condition bandings were defined to ensure that the default carriageway deterioration models given adequate scope within the intermediate bands to carry out preventative maintenance treatments.

	CCI Condition Bands					
Description	Code	Strategic Route & Main Distributors	Secondary Roads	Link Roads	Local Access Roads	
Carriageway in Very Good condition	VG	0 – 3.0	0-4.0	0 – 6.0	0 – 7.0	
Carriageway in Good condition	G	3.1 - 10	4.1 – 13.0	6.1 – 17.0	7.1 – 18.0	
Carriageway in Fair condition	F	10.1 – 25.0	13.1 – 30.0	17.1 – 35.0	18.1 – 38.0	
Carriageway in Poor condition	Р	25.1 – 61.0	30.1 – 65.0	35.1 – 72.0	38.1 – 76.0	
Carriageway in Very Poor condition	VP	61.1 - 100	65.1 – 100.0	72.1 – 100.0	76.1 – 100.0	

Table A1: CCI Condition Bands by Road Hierarchy

Data from a variety of local highway authorities in England were used to test these bands. The testing has confirmed that the bandings give TPMs with meaningful transition from the Very Good condition state to the Very Poor condition state, with adequate scope within the intermediate bands to for example carry out preventative maintenance treatments.

HOMOGENEOUS CARRIAGEWAY ASSET GROUPS

At the strategic level, carriageway sections are defined in the Lifecycle Planning Toolkit by aggregating individual road sections known to have similar performance (in terms of deterioration) and reporting requirements to form Homogeneous Carriageway Asset Groups. Each group normally represents a large number of physical road sections each of which have similar characteristics and are distributed over the road network. Instead of each road section being analysed separately, just the homogeneous group is analysed. The advantage of this approach is the fast turn-around that it facilitates, and hence the ability to use the Lifecycle Planning Toolkit to iterate to a preferred solution/strategy relatively quickly.

Default carriageway deterioration models were developed for each of the Homogeneous Asset Groups defined by road hierarchy and environment (Table A2). In some cases the same deterioration models are provided for more than one group

Description of Homogeneous Group	Road Hierarchy	Environment
Urban Strategic Route	2 – Strategic Route	Urban
Rural Strategic Route	2 – Strategic Route	Rural
Urban Main Distributor	3a – Main Distributor	Urban
Rural Main Distributor	3a – Main Distributor	Rural
Urban Secondary Distributor	3b – Secondary Distributor	Urban
Rural Secondary Distributor	3b – Secondary Distributor	Rural
Urban Link Road	4a – Link Road	Urban
Rural Link Road	4a – Link Road	Rural
Urban Local Access Road	4b – Local Access Road	Urban
Rural Local Access Road	4b – Local Access Road	Rural

Table A2: Homogeneous Carriageway Groups

The homogeneous groups shown in Table A2 could be subdivided further by pavement type (e.g. flexible, flexible composite, rigid, etc) and road type (e.g. single, dual etc) as appropriate. However, it is important to note that, as the number of homogeneous groups grows it becomes increasingly cumbersome to set up the Toolkit and interpret the outputs.

DEFAULT CARRIAGEWAY DETERIORATION MODELS

The default models presented here were derived using local highway authority data comprising: SCANNER, CVI and maintenance history. Data used were obtained from several local highway authorities in England including: Worcestershire, Hertfordshire, Cornwall and Peterborough. It should be noted that these models are defaults only. Users should use models that better reflect local deterioration trends if such models are available.

Two sets of the default carriageway deterioration models are presented:

- TPMs from SCANNER data; and
- TPMs from CVI data

DEFAULT TRANSITION PROBABILITY MATRICES DERIVED USING SCANNER DATA

The default carriageway deterioration models in the form of TPMs derived from local highway authorities' SCANNER data are given in Figures A1 to A7.

	VG	G	F	Р	VP
VG	0.924	0.076	0.000	0.000	0.000
G	-	0.828	0.172	0.000	0.000
F	-	-	0.797	0.203	0.000
Р	-	-	-	0.868	0.132
VP	-	-	-	-	1.000

Figure A1: Deterioration model for SCANNER: Urban Strategic Routes and Urban Main Distributors

	VG	G	F	Р	VP
VG	0.910	0.090	0.000	0.000	0.000
G	-	0.714	0.279	0.007	0.000
F	-	-	0.681	0.318	0.001
Р	-	-	-	0.771	0.229
VP	-	-	-	-	1.000

Figure A2: Deterioration model for SCANNER: Rural Strategic Routes and Rural Main Distributors

	VG	G	F	Р	VP
VG	0.929	0.071	0.000	0.000	0.000
G	-	0.814	0.186	0.000	0.000
F	-	-	0.775	0.225	0.000
Р	-	-	-	0.846	0.154
VP	-	-	-	-	1.000

Figure A3: Deterioration model for SCANNER: Urban Secondary Distributors

	VG	G	F	Р	VP
VG	0.928	0.072	0.000	0.000	0.000
G	-	0.811	0.189	0.000	0.000
F	-	-	0.777	0.223	0.000
Р	-	-	-	0.839	0.161
VP	-	-	-	-	1.000

Figure A4: Deterioration model for SCANNER: Rural Secondary Distributors

	VG	G	F	Р	VP
VG	0.937	0.063	0.000	0.000	0.000
G	-	0.796	0.202	0.002	0.000
F	-	-	0.756	0.244	0.000
Р	-	-	-	0.880	0.120
VP	-	-	-	-	1.000

Figure A5: Deterioration model for SCANNER: Urban Link Roads

	VG	G	F	Р	VP
VG	0.933	0.067	0.000	0.000	0.000
G	-	0.773	0.225	0.002	0.000
F	-	-	0.722	0.278	0.000
Р	-	-	-	0.836	0.164
VP	-	-	-	-	1.000

Figure A6: Deterioration model for SCANNER: Rural Link Roads

	VG	G	F	Р	VP
VG	0.963	0.037	0.000	0.000	0.000
G	-	0.898	0.102	0.000	0.000
F	-	-	0.897	0.103	0.000
Р	-	-	-	0.933	0.067
VP	-	-	-	-	1.000

Figure A7: Deterioration model for SCANNER: Local Roads (Urban and Rural)

DEFAULT TRANSITION PROBABILITY MATRICES DERIVED USING CVI DATA

The default carriageway deterioration models in the form of Transition Probability Matrices derived from local highway authorities' CVI data are given in Figures D8 to D17.

	VG	G	F	Р	VP
VG	0.911	0.088	0.001	0.000	0.000
G	-	0.727	0.265	0.008	0.000
F	-	-	0.688	0.310	0.002
Р	-	-	-	0.775	0.225
VP	-	-	-	-	1.000

Figure A8: Deterioration model for CVI: Urban Strategic Routes

	VG	G	F	Р	VP
VG	0.913	0.087	0.000	0.000	0.000
G	-	0.741	0.254	0.005	0.000
F	-	-	0.710	0.289	0.001
Р	-	-	-	0.788	0.212
VP	-	-	-	-	1.000

Figure A9: Deterioration model for CVI: Rural Strategic Routes

	VG	G	F	Р	VP
VG	0.880	0.119	0.001	0.000	0.000
G	-	0.740	0.740 0.251 0.009		0.000
F	-	-	0.706	0.292	0.002
Р	-	-	-	0.780	0.220
VP	-	-	-	-	1.000

Figure A10: Deterioration model for CVI: Urban Main Distributors

	VG	G	F	Р	VP
VG	0.913	0.086	0.001	0.000	0.000
G	-	0.752	0.242	0.006	0.000
F	-	-	0.714	0.285	0.001
Р	-	-	-	0.796	0.204
VP	-	-	-	-	1.000

Figure A11: Deterioration model for CVI: Rural Main Distributors

	VG	G	F	Р	VP
VG	0.932	0.068	0.000	0.000	0.000
G	-	0.831	0.169	0.000	0.000
F	-	-	0.797	0.203	0.000
Р	-	-	-	0.853	0.147
VP	-	-	-	-	1.000

Figure A12: Deterioration model for CVI: Urban Secondary Distributors

_	VG	G	F	Р	VP
VG	0.932	0.068	0.000	0.000	0.000
G	-	0.834	0.834 0.166 0.000		0.000
F	-	-	0.797	0.203	0.000
Р	-	-	-	0.856	0.144
VP	-	-	-	-	1.000

Figure A13: Deterioration model for CVI: Rural Secondary Distributors

	VG	G	F	Р	VP
VG	0.940	0.060	0.000	0.000	0.000
G	-	- 0.815 0.184 0.001		0.001	0.000
F	-	-	0.781	0.219	0.000
Р	-	-	-	0.862	0.138
VP	-	-	-	-	1.000

Figure A14: Deterioration model for CVI: Urban Link Roads

	VG	G	F	Р	VP
VG	0.941	0.059	0.000	0.000	0.000
G	-	0.815	0.184	0.001	0.000
F	-	-	0.788	0.212	0.000
Р	-	-	-	0.864	0.136
VP	-	-	-	-	1.000

Figure A15: Deterioration model for CVI: Rural Link Roads

	VG	G	F	Р	VP
VG	0.942	0.058	0.000	0.000	0.000
G	-	0.829	0.170	0.001 0.00	
F	-	-	0.795	0.205	0.000
Р	-	-	-	0.872	0.128
VP	-	-	-	-	1.000

Figure A16: Deterioration model for CVI: Urban Local Roads

	VG	G	F	Р	VP
VG	0.943	0.057	0.000	0.000	0.000
G	-	0.832	0.168	0.001	0.000
F	-	-	0.795	0.205	0.000
Р	-	-	-	0.874	0.126
VP	-	-	-	-	1.000

Figure A17: Deterioration model for CVI: Rural Local Roads

DEVELOPING TRANSITION PROBABILITY MATRICES FROM DATA

It should be noted that these models given above are defaults only. When suitable data is available, then TPMs can be developed that better reflect the deterioration trend of the road network from which the data were measured.

The standard approach is to observe, from historic data, the way in which an Homogeneous Group deteriorates over time and use this to estimate the probability p_{ij} using equation A3 below. N_{ij} is the number of assets in the Homogenous Group that moved from condition *i* to condition *j* during one year and N_i is the total number of assets that started the year in condition state *i*.

$$\rho_{ij} = \frac{N_{ij}}{N_i} \tag{A3}$$

The proportions are likely to vary from year to year thereby requiring an average to be determined over time for each p_{ij} to ensure accuracy in the model.

APPENDIX B – ILLUSTRATIONS FOR THE CARRIAGEWAY TOOLKIT

Serial	Name	Step	Treatment	Condition Band	% Treated	VG	G	F	Ρ	VP
		1	None							
		2	None							
		3	None							
1	Do Nothing	4	None							
		5	None							
		6	None							
		7	None							
		1	Surface Dressing	F	10.00%			10.00%		
		2	Micro Asphalt	F	10.00%			10.00%		
		3	Moderate Overlay	F	5.00%			5.00%		
2	Strat. & Main	4	Moderate Inlay	Р	35.00%				35.00%	
		5	Deep Inlay	Р	15.00%				15.00%	
	6Deep InlayVP35.00%7ReconstructionVP5.00%	6	Deep Inlay	VP	35.00%					35.00%
						5.00%				
		1	Surface Dressing	F	15.00%			15.00%		
	Secondary	2	Micro Asphalt	F	15.00%			15.00%		
		3	Moderate Overlay	F	5.00%			5.00%		
3		4	Moderate Inlay	Р	10.00%				10.00%	
		5	Deep Inlay	Р	5.00%				5.00%	
		6	Deep Inlay	VP	10.00%					10.00%
		7	Reconstruction	VP	5.00%					5.00%
		1	Surface Dressing	F	5.00%			5.00%		
		2	Micro Asphalt	F	5.00%			5.00%		
		3	Moderate Overlay	F	2.00%			2.00%		
4	Link	4	Moderate Inlay	Р	20.00%				20.00%	
		5	Deep Inlay	Р	5.00%				5.00%	
		6	Deep Inlay	VP	10.00%					10.00%
		7	Reconstruction	VP	15.00%					15.00%
		1	Surface Dressing	F	4.00%			4.00%		
		2	Micro Asphalt	F	4.00%			4.00%		
		3	Moderate Overlay	F	2.00%			2.00%		
5	Local	4	Moderate Inlay	Р	3.00%				3.00%	
		5	Deep Inlay	Р	3.00%				3.00%	
		6	Deep Inlay	VP	5.00%					5.00%
		7	Reconstruction	VP	2.00%					2.00%

Figure B1: Treatment Strategies

F	Run Analysis	Clear selected Copy select row(s) row(s)	ed Paste copied row(s)					
				1	2	3	4	5
No.	Homogeneous Group	Scenario Name	Criteria	2012	2013	2014	2015	2016
			Transition matrix	Strategic & Main				
1	Strategic & Main	Do Nothing	Treatment strategy	Do Nothing				
	Strategic & Marin	Do Notining	Budget constraint					
			Performance target					
		Do Nothing	Transition matrix	Secondary	Secondary	Secondary	Secondary	Secondary
2	Secondary		Treatment strategy	Do Nothing				
2	Secondary		Budget constraint					
			Performance target					
			Transition matrix	Link	Link	Link	Link	Link
3	Link	Do Nothing	Treatment strategy	Do Nothing				
5	LIIIK	Do Notining	Budget constraint					
			Performance target					
			Transition matrix	Local	Local	Local	Local	Local
4	Local	Do Nothing	Treatment strategy	Do Nothing				
4	LUCAT	Do Notining	Budget constraint					
			Performance target					

Figure B2: Illustration of 'Scenario' worksheet under the 'Do Nothing' scenario (Scenario 1)

Serial	Name	Treatment	Budget constraints (£ 000s)	Total (£ 000s)		
		Surface Dressing	35			
		Micro Asphalt	54			
4		Moderate Overlay	43	404.445		
1	£404k/Year	Moderate Inlay	133	404.415		
		Deep Inlay	129			
		Reconstruction	11			
		Surface Dressing	11			
		Micro Asphalt	18			
2		Moderate Overlay	9	75 277		
	£75k/Year	Moderate Inlay	10	75.277		
		Deep Inlay	18			
		Reconstruction	8			
		Surface Dressing	2			
		Micro Asphalt	4			
3	CACI-Mana	Moderate Overlay	2	45 61 4		
3	£46k/Year	Moderate Inlay	16	45.614		
		Deep Inlay	10			
		Reconstruction	11			
		Surface Dressing	5			
		Micro Asphalt	8			
4	£62K/Year	Moderate Overlay	6	(2,128		
4		Moderate Inlay	8	62.128		
		Deep Inlay	26			
		Reconstruction	9			

Figure B3: Budgets

User Guidance for Lifecycle Planning Toolkit

Г

F	Run Analysis	Clear selected Copy select row(s) row(s)	ed Paste copied row(s)					
				1	2	3	4	5
No.	No. Homogeneous Group Scenario Name Criteria			2012	2013	2014	2015	2016
			Transition matrix	Strategic & Main				
1	Strategic & Main	Scenario 3 (25%	Treatment strategy	Strat. & Main				
1	Strategic & Marin	Budget Cut)	Budget constraint	£404k/Year	£404k/Year	£404k/Year	£404k/Year	£404k/Year
			Performance target					
			Transition matrix	Secondary	Secondary	Secondary	Secondary	Secondary
2	Secondary	Scenario 3 (25% Budget Cut)	Treatment strategy	Secondary	Secondary	Secondary	Secondary	Secondary
2	Secondary		Budget constraint	£75k/Year	£75k/Year	£75k/Year	£75k/Year	£75k/Year
			Performance target					
			Transition matrix	Link	Link	Link	Link	Link
3	Link	Scenario 3 (25%	Treatment strategy	Link	Link	Link	Link	Link
5	LITIK	Budget Cut)	Budget constraint	£46k/Year	£46k/Year	£46k/Year	£46k/Year	£46k/Year
			Performance target					
			Transition matrix	Local	Local	Local	Local	Local
4	4 Local	Scenario 3 (25%	Treatment strategy	Local	Local	Local	Local	Local
4	LUCAT	Budget Cut)	Budget constraint	£62K/Year	£62K/Year	£62K/Year	£62K/Year	£62K/Year
			Performance target					

Figure B4: Illustration of 'Scenario' worksheet under the 'Budget Constraint' scenario (Scenario 3)

No.	Name	Performance Indicator	Expression	Performance Target (%)
1	VP&P<=5.7%	VP & P	<=	6%
2	VP&P<=9.3%	VP & P	<=	9%
3	VP&P<=6.8%	VP & P	<=	7%
4	VP&P<=27%	VP & P	<=	27%

Figure B5: Performance Target

R	Run Analysis Clear selected row(s) Copy selected row(s) Paste copied row(s)										
				9	10	11	12	13			
No.	Homogeneous Group	Scenario Name	Criteria	2020	2021	2022	2023	2024			
			Transition matrix	Strategic & Main							
1	Strategic & Main	Scenario 4 (Budget Constraint and	Treatment strategy	Strat. & Main							
1	Strategie & Marin	Performance Target)	Budget constraint	£404k/Year	£404k/Year						
		3,	Performance target			VP&P<=5.7%	VP&P<=5.7%	VP&P<=5.7%			
			Transition matrix	Secondary	Secondary	Secondary	Secondary	Secondary			
2		Scenario 4 (Budget Constraint and Performance Target)	Treatment strategy	Secondary	Secondary	Secondary	Secondary	Secondary			
2	Secondary		Budget constraint	£75k/Year	£75k/Year						
		3,	Performance target			VP&P<=9.3%	VP&P<=9.3%	VP&P<=9.3%			
			Transition matrix	Link	Link	Link	Link	Link			
3		Scenario 4 (Budget Constraint and	Treatment strategy	Link	Link	Link	Link	Link			
5		Performance Target)	Budget constraint	£46k/Year	£46k/Year						
		0 7	Performance target			VP&P<=6.8%	VP&P<=6.8%	VP&P<=6.8%			
			Transition matrix	Local	Local	Local	Local	Local			
4	Local	Scenario 4 (Budget Constraint and	Treatment strategy	Local	Local	Local	Local	Local			
4	LUCAT	Performance Target)	Budget constraint	£62K/Year	£62K/Year						
			Performance target			VP&P<=27%	VP&P<=27%	VP&P<=27%			

Figure B6: Illustration of 'Scenario' worksheet under the 'Performance Target' scenario (Scenario 4)

APPENDIX C – ILLUSTRATIONS FOR THE ANCILLARY ASSETS TOOLKIT

Serial	Name	Step	Treatment	Condition Band	% Treated	VG	G	F	Р	VP
1	1 Denle en en fail		Asset Replacement	VP	100%					100%
1	Replace on fail	2	None							

Figure C1: Treatment Strategy

R	Run Analysis	lear selected Copy select row(s) row(s)	1	2	3	4	
No.	No. Homogeneous Group Scenario Nam		Criteria	2012	2013	2014	2015
				TSM&V	TSM&V	TSM&V	TSM&V
1	Traffic Signs - Matrix	Replace on fail	Treatment strategy	Replace on fail	Replace on fail	Replace on fail	Replace on fail
1	and VMS		Budget constraint				
			Performance target				
			Transition matrix	LC	LC	LC	LC
2	Lighting Columns	Replace on fail	Treatment strategy	Replace on fail	Replace on fail	Replace on fail	Replace on fail
2	Lighting Columns		Budget constraint				
			Performance target				

Figure C2: Illustration of 'Scenario' worksheet under the 'Replace on fail' scenario (Scenario 1)

Serial	Name	Treatment	Budget constraints (£ 000s)	Total (£ 000s)
1	Dudget Ciene	Asset Replacement	100	100
T	Budget - Signs	None	0	100
2	Dudest Lishting	Asset Replacement	10	10
2	Budget - Lighting	None	0	10

Figure C3: Illustration of 'Budgets' worksheet under the 'Budget Constraint' scenario (Scenario 2)

				1	2	3	4
No.	Homogeneous Group	Scenario Name	Criteria	2012	2013	2014	2015
			Transition matrix	TSM&V	TSM&V	TSM&V	TSM&V
1	Traffic Signs - Matrix	Replace on fail	Treatment strategy	Replace on fail	Replace on fail	Replace on fail	Replace on fail
1	and VMS		Budget constraint	Budget - Signs	Budget - Signs	Budget - Signs	Budget - Signs
			Performance target				
			Transition matrix	LC	LC	LC	LC
2	Lighting Columns	Replace on fail	Treatment strategy	Replace on fail	Replace on fail	Replace on fail	Replace on fail
2	Lighting corunnis		Budget constraint	Budget - Lighting	Budget - Lighting	Budget - Lighting	Budget - Lighting
			Performance target				

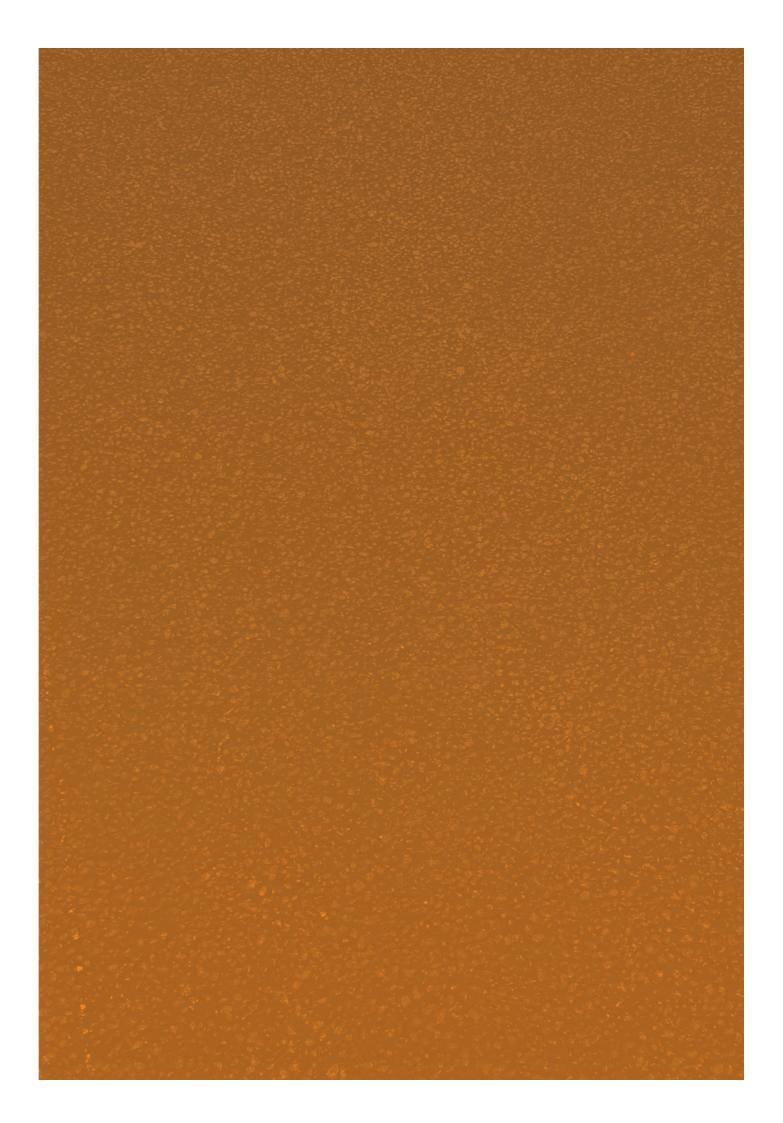
Figure C4: Illustration of 'Scenario' worksheet under the 'Budget Constraint' scenario (Scenario 2)

APPENDIX D – ILLUSTRATIONS FOR THE FOOTWAY TOOLKIT

Serial	Name	Step	Treatment	Condition Band	% Treated	VG	G	F	Ρ	VP
1	Do Nothing	1	None							
1	DO NOUIIIIg	2	None							
2	FLAGS&BITUM[20%]	1	Lift and Re-lay	Р	20%				20%	
2	FLAG3&BITUM[20%]	2	Replacement [Bituminous]	VP	20%					20%
3	FLAGS&BITUM[40%]	1	Lift and Re-lay	Р	40%				40%	
5	FLAGS&BITUM[40%]	2	Replacement [Bituminous]	VP	40%					40%
4	FLAGS&BITUM[60%]	1	Lift and Re-lay	Р	60%				60%	
4	FLAGS&BITUM[60%]	2	Replacement [Bituminous]	VP	60%					60%
5	FLAGS&BITUM[80%]	1	Lift and Re-lay	Р	80%				80%	
5		2	Replacement [Bituminous]	VP	80%					80%
6	FLAGS&BITUM[100%]	1	Lift and Re-lay	Р	100%				100%	
0		2	Replacement [Bituminous]	VP	100%					100%
7		1	Replacement [Bituminous]	Р	20%				20%	
	BITUM[20%]	2	Replacement [Bituminous]	VP	20%					20%
8		1	Replacement [Bituminous]	Р	40%				40%	
ð	BITUM[40%]	2	Replacement [Bituminous]	VP	40%					40%
0		1	Replacement [Bituminous]	Р	60%				60%	
9	BITUM[60%]	2	Replacement [Bituminous]	VP	60%					60%
10		1	Replacement [Bituminous]	Р	80%				80%	
10	BITUM[80%]	2	Replacement [Bituminous]	VP	80%					80%
11		1	Replacement [Bituminous]	Р	100%				100%	
11	BITUM[100%]	2	Replacement [Bituminous]	VP	100%					100%

Figure D1: Treatment Strategies

Run	Run WLC Analysis Clear selected row(s) Copy selected row(s) Paste copied row(s)				2	3	4	5
No.	Homogeneous Group	Criteria	2012	2013	2014	2015	2016	
			Transition matrix	Flags	Flags	Flags	Flags	Flags
1		Do Nothing	Treatment strategy	Do Nothing				
1	Flags		Budget constraint					
			Performance target					
			Transition matrix	Bituminous	Bituminous	Bituminous	Bituminous	Bituminous
2	Bituminous	Do Nothing	Treatment strategy	Do Nothing				
2	Bituminous	Do Nothing	Budget constraint					
			Performance target					


Figure D2: Illustration of 'Scenario' worksheet under the 'Do Nothing' scenario (Scenario 1)

Run WLC Analysis	Clear selected Co row(s)	py selected Paste copi row(s) row(s)	eď					
	100(3) 100(3)			2	3	4	5	6
Homogeneous Group	Scenario Name	Criteria	2012	2013	2014	2015	2016	2017
		Transition matrix	Flags	Flags	Flags	Flags	Flags	Flags
Flags	Eliminate VP&P by year 5 and maintain steady state	Treatment strategy	FLAGS&BITUM[20%]	FLAGS&BITUM[40%]	FLAGS&BITUM[60%]	FLAGS&BITUM[80%]	FLAGS&BITUM[100%]	FLAGS&BITUM[100%]
-		Budget constraint						
		Performance target						
		Transition matrix	Bituminous	Bituminous	Bituminous	Bituminous	Bituminous	Bituminous
Bituminous	Eliminate VP&P by year 5	Treatment strategy	BITUM[20%]	BITUM[40%]	BITUM[60%]	BITUM[80%]	BITUM[100%]	BITUM[100%]
	and maintain steady state	Budget constraint						
		Performance target						

Figure D3: Illustration of 'Scenario' worksheet under Scenario 2

